-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathpcr.py
90 lines (76 loc) · 4.47 KB
/
pcr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import torch
from torch.utils import data
from utils.buffer.buffer import Buffer
from agents.base import ContinualLearner
from continuum.data_utils import dataset_transform
from utils.setup_elements import transforms_match, transforms_aug
from utils.utils import maybe_cuda
from utils.loss import SupConLoss
class ProxyContrastiveReplay(ContinualLearner):
"""
Proxy-based Contrastive Replay,
Implements the strategy defined in
"PCR: Proxy-based Contrastive Replay for Online Class-Incremental Continual Learning"
https://arxiv.org/abs/2304.04408
This strategy has been designed and tested in the
Online Setting (OnlineCLScenario). However, it
can also be used in non-online scenarios
"""
def __init__(self, model, opt, params):
super(ProxyContrastiveReplay, self).__init__(model, opt, params)
self.buffer = Buffer(model, params)
self.mem_size = params.mem_size
self.eps_mem_batch = params.eps_mem_batch
self.mem_iters = params.mem_iters
def train_learner(self, x_train, y_train):
self.before_train(x_train, y_train)
# set up loader
train_dataset = dataset_transform(x_train, y_train, transform=transforms_match[self.data])
train_loader = data.DataLoader(train_dataset, batch_size=self.batch, shuffle=True, num_workers=0,
drop_last=True)
# set up model
self.model = self.model.train()
for ep in range(self.epoch):
for i, batch_data in enumerate(train_loader):
# batch update
batch_x, batch_y = batch_data
batch_x_aug = torch.stack([transforms_aug[self.data](batch_x[idx].cpu())
for idx in range(batch_x.size(0))])
batch_x = maybe_cuda(batch_x, self.cuda)
batch_x_aug = maybe_cuda(batch_x_aug, self.cuda)
batch_y = maybe_cuda(batch_y, self.cuda)
batch_x_combine = torch.cat((batch_x, batch_x_aug))
batch_y_combine = torch.cat((batch_y, batch_y))
for j in range(self.mem_iters):
logits, feas= self.model.pcrForward(batch_x_combine)
novel_loss = 0*self.criterion(logits, batch_y_combine)
self.opt.zero_grad()
mem_x, mem_y = self.buffer.retrieve(x=batch_x, y=batch_y)
if mem_x.size(0) > 0:
# mem_x, mem_y = Rotation(mem_x, mem_y)
mem_x_aug = torch.stack([transforms_aug[self.data](mem_x[idx].cpu())
for idx in range(mem_x.size(0))])
mem_x = maybe_cuda(mem_x, self.cuda)
mem_x_aug = maybe_cuda(mem_x_aug, self.cuda)
mem_y = maybe_cuda(mem_y, self.cuda)
mem_x_combine = torch.cat([mem_x, mem_x_aug])
mem_y_combine = torch.cat([mem_y, mem_y])
mem_logits, mem_fea= self.model.pcrForward(mem_x_combine)
combined_feas = torch.cat([mem_fea, feas])
combined_labels = torch.cat((mem_y_combine, batch_y_combine))
combined_feas_aug = self.model.pcrLinear.L.weight[combined_labels]
combined_feas_norm = torch.norm(combined_feas, p=2, dim=1).unsqueeze(1).expand_as(combined_feas)
combined_feas_normalized = combined_feas.div(combined_feas_norm + 0.000001)
combined_feas_aug_norm = torch.norm(combined_feas_aug, p=2, dim=1).unsqueeze(1).expand_as(
combined_feas_aug)
combined_feas_aug_normalized = combined_feas_aug.div(combined_feas_aug_norm + 0.000001)
cos_features = torch.cat([combined_feas_normalized.unsqueeze(1),
combined_feas_aug_normalized.unsqueeze(1)],
dim=1)
PSC = SupConLoss(temperature=0.09, contrast_mode='proxy')
novel_loss += PSC(features=cos_features, labels=combined_labels)
novel_loss.backward()
self.opt.step()
# update mem
self.buffer.update(batch_x, batch_y)
self.after_train()