-
Notifications
You must be signed in to change notification settings - Fork 248
/
util.py
433 lines (383 loc) · 20.1 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
# This file is part of pyphe.
#
# pyphe is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# pyphe is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with pyphe. If not, see <http://www.gnu.org/licenses/>.
import os
import random
from base64 import urlsafe_b64encode, urlsafe_b64decode
from binascii import hexlify, unhexlify
try:
import gmpy2
HAVE_GMP = True
except ImportError:
HAVE_GMP = False
try:
from Crypto.Util import number
HAVE_CRYPTO = True
except ImportError:
HAVE_CRYPTO = False
# GMP's powmod has greater overhead than Python's pow, but is faster.
# From a quick experiment on our machine, this seems to be the break even:
_USE_MOD_FROM_GMP_SIZE = (1 << (8*2))
def powmod(a, b, c):
"""
Uses GMP, if available, to do a^b mod c where a, b, c
are integers.
:return int: (a ** b) % c
"""
if a == 1:
return 1
if not HAVE_GMP or max(a, b, c) < _USE_MOD_FROM_GMP_SIZE:
return pow(a, b, c)
else:
return int(gmpy2.powmod(a, b, c))
def extended_euclidean_algorithm(a, b):
"""Extended Euclidean algorithm
Returns r, s, t such that r = s*a + t*b and r is gcd(a, b)
See <https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm>
"""
r0, r1 = a, b
s0, s1 = 1, 0
t0, t1 = 0, 1
while r1 != 0:
q = r0 // r1
r0, r1 = r1, r0 - q*r1
s0, s1 = s1, s0 - q*s1
t0, t1 = t1, t0 - q*t1
return r0, s0, t0
def invert(a, b):
"""
The multiplicitive inverse of a in the integers modulo b.
:return int: x, where a * x == 1 mod b
"""
if HAVE_GMP:
s = int(gmpy2.invert(a, b))
# according to documentation, gmpy2.invert might return 0 on
# non-invertible element, although it seems to actually raise an
# exception; for consistency, we always raise the exception
if s == 0:
raise ZeroDivisionError('invert() no inverse exists')
return s
else:
r, s, _ = extended_euclidean_algorithm(a, b)
if r != 1:
raise ZeroDivisionError('invert() no inverse exists')
return s % b
def getprimeover(N):
"""Return a random N-bit prime number using the System's best
Cryptographic random source.
Use GMP if available, otherwise fallback to PyCrypto
"""
if HAVE_GMP:
randfunc = random.SystemRandom()
r = gmpy2.mpz(randfunc.getrandbits(N))
r = gmpy2.bit_set(r, N - 1)
return int(gmpy2.next_prime(r))
elif HAVE_CRYPTO:
return number.getPrime(N, os.urandom)
else:
randfunc = random.SystemRandom()
n = randfunc.randrange(2**(N-1), 2**N) | 1
while not is_prime(n):
n += 2
return n
def isqrt(N):
""" returns the integer square root of N """
if HAVE_GMP:
return int(gmpy2.isqrt(N))
else:
return improved_i_sqrt(N)
def improved_i_sqrt(n):
""" taken from
http://stackoverflow.com/questions/15390807/integer-square-root-in-python
Thanks, mathmandan """
assert n >= 0
if n == 0:
return 0
i = n.bit_length() >> 1 # i = floor( (1 + floor(log_2(n))) / 2 )
m = 1 << i # m = 2^i
#
# Fact: (2^(i + 1))^2 > n, so m has at least as many bits
# as the floor of the square root of n.
#
# Proof: (2^(i+1))^2 = 2^(2i + 2) >= 2^(floor(log_2(n)) + 2)
# >= 2^(ceil(log_2(n) + 1) >= 2^(log_2(n) + 1) > 2^(log_2(n)) = n. QED.
#
while (m << i) > n: # (m<<i) = m*(2^i) = m*m
m >>= 1
i -= 1
d = n - (m << i) # d = n-m^2
for k in range(i-1, -1, -1):
j = 1 << k
new_diff = d - (((m<<1) | j) << k) # n-(m+2^k)^2 = n-m^2-2*m*2^k-2^(2k)
if new_diff >= 0:
d = new_diff
m |= j
return m
# base64 utils from jwcrypto
def base64url_encode(payload):
if not isinstance(payload, bytes):
payload = payload.encode('utf-8')
encode = urlsafe_b64encode(payload)
return encode.decode('utf-8').rstrip('=')
def base64url_decode(payload):
l = len(payload) % 4
if l == 2:
payload += '=='
elif l == 3:
payload += '='
elif l != 0:
raise ValueError('Invalid base64 string')
return urlsafe_b64decode(payload.encode('utf-8'))
def base64_to_int(source):
return int(hexlify(base64url_decode(source)), 16)
def int_to_base64(source):
assert source != 0
I = hex(source).rstrip("L").lstrip("0x")
return base64url_encode(unhexlify((len(I) % 2) * '0' + I))
# prime testing
first_primes = [
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71,
73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151,
157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233,
239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317,
331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419,
421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503,
509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607,
613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701,
709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811,
821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911,
919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997, 1009, 1013,
1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069, 1087, 1091,
1093, 1097, 1103, 1109, 1117, 1123, 1129, 1151, 1153, 1163, 1171, 1181,
1187, 1193, 1201, 1213, 1217, 1223, 1229, 1231, 1237, 1249, 1259, 1277,
1279, 1283, 1289, 1291, 1297, 1301, 1303, 1307, 1319, 1321, 1327, 1361,
1367, 1373, 1381, 1399, 1409, 1423, 1427, 1429, 1433, 1439, 1447, 1451,
1453, 1459, 1471, 1481, 1483, 1487, 1489, 1493, 1499, 1511, 1523, 1531,
1543, 1549, 1553, 1559, 1567, 1571, 1579, 1583, 1597, 1601, 1607, 1609,
1613, 1619, 1621, 1627, 1637, 1657, 1663, 1667, 1669, 1693, 1697, 1699,
1709, 1721, 1723, 1733, 1741, 1747, 1753, 1759, 1777, 1783, 1787, 1789,
1801, 1811, 1823, 1831, 1847, 1861, 1867, 1871, 1873, 1877, 1879, 1889,
1901, 1907, 1913, 1931, 1933, 1949, 1951, 1973, 1979, 1987, 1993, 1997,
1999, 2003, 2011, 2017, 2027, 2029, 2039, 2053, 2063, 2069, 2081, 2083,
2087, 2089, 2099, 2111, 2113, 2129, 2131, 2137, 2141, 2143, 2153, 2161,
2179, 2203, 2207, 2213, 2221, 2237, 2239, 2243, 2251, 2267, 2269, 2273,
2281, 2287, 2293, 2297, 2309, 2311, 2333, 2339, 2341, 2347, 2351, 2357,
2371, 2377, 2381, 2383, 2389, 2393, 2399, 2411, 2417, 2423, 2437, 2441,
2447, 2459, 2467, 2473, 2477, 2503, 2521, 2531, 2539, 2543, 2549, 2551,
2557, 2579, 2591, 2593, 2609, 2617, 2621, 2633, 2647, 2657, 2659, 2663,
2671, 2677, 2683, 2687, 2689, 2693, 2699, 2707, 2711, 2713, 2719, 2729,
2731, 2741, 2749, 2753, 2767, 2777, 2789, 2791, 2797, 2801, 2803, 2819,
2833, 2837, 2843, 2851, 2857, 2861, 2879, 2887, 2897, 2903, 2909, 2917,
2927, 2939, 2953, 2957, 2963, 2969, 2971, 2999, 3001, 3011, 3019, 3023,
3037, 3041, 3049, 3061, 3067, 3079, 3083, 3089, 3109, 3119, 3121, 3137,
3163, 3167, 3169, 3181, 3187, 3191, 3203, 3209, 3217, 3221, 3229, 3251,
3253, 3257, 3259, 3271, 3299, 3301, 3307, 3313, 3319, 3323, 3329, 3331,
3343, 3347, 3359, 3361, 3371, 3373, 3389, 3391, 3407, 3413, 3433, 3449,
3457, 3461, 3463, 3467, 3469, 3491, 3499, 3511, 3517, 3527, 3529, 3533,
3539, 3541, 3547, 3557, 3559, 3571, 3581, 3583, 3593, 3607, 3613, 3617,
3623, 3631, 3637, 3643, 3659, 3671, 3673, 3677, 3691, 3697, 3701, 3709,
3719, 3727, 3733, 3739, 3761, 3767, 3769, 3779, 3793, 3797, 3803, 3821,
3823, 3833, 3847, 3851, 3853, 3863, 3877, 3881, 3889, 3907, 3911, 3917,
3919, 3923, 3929, 3931, 3943, 3947, 3967, 3989, 4001, 4003, 4007, 4013,
4019, 4021, 4027, 4049, 4051, 4057, 4073, 4079, 4091, 4093, 4099, 4111,
4127, 4129, 4133, 4139, 4153, 4157, 4159, 4177, 4201, 4211, 4217, 4219,
4229, 4231, 4241, 4243, 4253, 4259, 4261, 4271, 4273, 4283, 4289, 4297,
4327, 4337, 4339, 4349, 4357, 4363, 4373, 4391, 4397, 4409, 4421, 4423,
4441, 4447, 4451, 4457, 4463, 4481, 4483, 4493, 4507, 4513, 4517, 4519,
4523, 4547, 4549, 4561, 4567, 4583, 4591, 4597, 4603, 4621, 4637, 4639,
4643, 4649, 4651, 4657, 4663, 4673, 4679, 4691, 4703, 4721, 4723, 4729,
4733, 4751, 4759, 4783, 4787, 4789, 4793, 4799, 4801, 4813, 4817, 4831,
4861, 4871, 4877, 4889, 4903, 4909, 4919, 4931, 4933, 4937, 4943, 4951,
4957, 4967, 4969, 4973, 4987, 4993, 4999, 5003, 5009, 5011, 5021, 5023,
5039, 5051, 5059, 5077, 5081, 5087, 5099, 5101, 5107, 5113, 5119, 5147,
5153, 5167, 5171, 5179, 5189, 5197, 5209, 5227, 5231, 5233, 5237, 5261,
5273, 5279, 5281, 5297, 5303, 5309, 5323, 5333, 5347, 5351, 5381, 5387,
5393, 5399, 5407, 5413, 5417, 5419, 5431, 5437, 5441, 5443, 5449, 5471,
5477, 5479, 5483, 5501, 5503, 5507, 5519, 5521, 5527, 5531, 5557, 5563,
5569, 5573, 5581, 5591, 5623, 5639, 5641, 5647, 5651, 5653, 5657, 5659,
5669, 5683, 5689, 5693, 5701, 5711, 5717, 5737, 5741, 5743, 5749, 5779,
5783, 5791, 5801, 5807, 5813, 5821, 5827, 5839, 5843, 5849, 5851, 5857,
5861, 5867, 5869, 5879, 5881, 5897, 5903, 5923, 5927, 5939, 5953, 5981,
5987, 6007, 6011, 6029, 6037, 6043, 6047, 6053, 6067, 6073, 6079, 6089,
6091, 6101, 6113, 6121, 6131, 6133, 6143, 6151, 6163, 6173, 6197, 6199,
6203, 6211, 6217, 6221, 6229, 6247, 6257, 6263, 6269, 6271, 6277, 6287,
6299, 6301, 6311, 6317, 6323, 6329, 6337, 6343, 6353, 6359, 6361, 6367,
6373, 6379, 6389, 6397, 6421, 6427, 6449, 6451, 6469, 6473, 6481, 6491,
6521, 6529, 6547, 6551, 6553, 6563, 6569, 6571, 6577, 6581, 6599, 6607,
6619, 6637, 6653, 6659, 6661, 6673, 6679, 6689, 6691, 6701, 6703, 6709,
6719, 6733, 6737, 6761, 6763, 6779, 6781, 6791, 6793, 6803, 6823, 6827,
6829, 6833, 6841, 6857, 6863, 6869, 6871, 6883, 6899, 6907, 6911, 6917,
6947, 6949, 6959, 6961, 6967, 6971, 6977, 6983, 6991, 6997, 7001, 7013,
7019, 7027, 7039, 7043, 7057, 7069, 7079, 7103, 7109, 7121, 7127, 7129,
7151, 7159, 7177, 7187, 7193, 7207, 7211, 7213, 7219, 7229, 7237, 7243,
7247, 7253, 7283, 7297, 7307, 7309, 7321, 7331, 7333, 7349, 7351, 7369,
7393, 7411, 7417, 7433, 7451, 7457, 7459, 7477, 7481, 7487, 7489, 7499,
7507, 7517, 7523, 7529, 7537, 7541, 7547, 7549, 7559, 7561, 7573, 7577,
7583, 7589, 7591, 7603, 7607, 7621, 7639, 7643, 7649, 7669, 7673, 7681,
7687, 7691, 7699, 7703, 7717, 7723, 7727, 7741, 7753, 7757, 7759, 7789,
7793, 7817, 7823, 7829, 7841, 7853, 7867, 7873, 7877, 7879, 7883, 7901,
7907, 7919, 7927, 7933, 7937, 7949, 7951, 7963, 7993, 8009, 8011, 8017,
8039, 8053, 8059, 8069, 8081, 8087, 8089, 8093, 8101, 8111, 8117, 8123,
8147, 8161, 8167, 8171, 8179, 8191, 8209, 8219, 8221, 8231, 8233, 8237,
8243, 8263, 8269, 8273, 8287, 8291, 8293, 8297, 8311, 8317, 8329, 8353,
8363, 8369, 8377, 8387, 8389, 8419, 8423, 8429, 8431, 8443, 8447, 8461,
8467, 8501, 8513, 8521, 8527, 8537, 8539, 8543, 8563, 8573, 8581, 8597,
8599, 8609, 8623, 8627, 8629, 8641, 8647, 8663, 8669, 8677, 8681, 8689,
8693, 8699, 8707, 8713, 8719, 8731, 8737, 8741, 8747, 8753, 8761, 8779,
8783, 8803, 8807, 8819, 8821, 8831, 8837, 8839, 8849, 8861, 8863, 8867,
8887, 8893, 8923, 8929, 8933, 8941, 8951, 8963, 8969, 8971, 8999, 9001,
9007, 9011, 9013, 9029, 9041, 9043, 9049, 9059, 9067, 9091, 9103, 9109,
9127, 9133, 9137, 9151, 9157, 9161, 9173, 9181, 9187, 9199, 9203, 9209,
9221, 9227, 9239, 9241, 9257, 9277, 9281, 9283, 9293, 9311, 9319, 9323,
9337, 9341, 9343, 9349, 9371, 9377, 9391, 9397, 9403, 9413, 9419, 9421,
9431, 9433, 9437, 9439, 9461, 9463, 9467, 9473, 9479, 9491, 9497, 9511,
9521, 9533, 9539, 9547, 9551, 9587, 9601, 9613, 9619, 9623, 9629, 9631,
9643, 9649, 9661, 9677, 9679, 9689, 9697, 9719, 9721, 9733, 9739, 9743,
9749, 9767, 9769, 9781, 9787, 9791, 9803, 9811, 9817, 9829, 9833, 9839,
9851, 9857, 9859, 9871, 9883, 9887, 9901, 9907, 9923, 9929, 9931, 9941,
9949, 9967, 9973, 10007, 10009, 10037, 10039, 10061, 10067, 10069, 10079,
10091, 10093, 10099, 10103, 10111, 10133, 10139, 10141, 10151, 10159,
10163, 10169, 10177, 10181, 10193, 10211, 10223, 10243, 10247, 10253,
10259, 10267, 10271, 10273, 10289, 10301, 10303, 10313, 10321, 10331,
10333, 10337, 10343, 10357, 10369, 10391, 10399, 10427, 10429, 10433,
10453, 10457, 10459, 10463, 10477, 10487, 10499, 10501, 10513, 10529,
10531, 10559, 10567, 10589, 10597, 10601, 10607, 10613, 10627, 10631,
10639, 10651, 10657, 10663, 10667, 10687, 10691, 10709, 10711, 10723,
10729, 10733, 10739, 10753, 10771, 10781, 10789, 10799, 10831, 10837,
10847, 10853, 10859, 10861, 10867, 10883, 10889, 10891, 10903, 10909,
10937, 10939, 10949, 10957, 10973, 10979, 10987, 10993, 11003, 11027,
11047, 11057, 11059, 11069, 11071, 11083, 11087, 11093, 11113, 11117,
11119, 11131, 11149, 11159, 11161, 11171, 11173, 11177, 11197, 11213,
11239, 11243, 11251, 11257, 11261, 11273, 11279, 11287, 11299, 11311,
11317, 11321, 11329, 11351, 11353, 11369, 11383, 11393, 11399, 11411,
11423, 11437, 11443, 11447, 11467, 11471, 11483, 11489, 11491, 11497,
11503, 11519, 11527, 11549, 11551, 11579, 11587, 11593, 11597, 11617,
11621, 11633, 11657, 11677, 11681, 11689, 11699, 11701, 11717, 11719,
11731, 11743, 11777, 11779, 11783, 11789, 11801, 11807, 11813, 11821,
11827, 11831, 11833, 11839, 11863, 11867, 11887, 11897, 11903, 11909,
11923, 11927, 11933, 11939, 11941, 11953, 11959, 11969, 11971, 11981,
11987, 12007, 12011, 12037, 12041, 12043, 12049, 12071, 12073, 12097,
12101, 12107, 12109, 12113, 12119, 12143, 12149, 12157, 12161, 12163,
12197, 12203, 12211, 12227, 12239, 12241, 12251, 12253, 12263, 12269,
12277, 12281, 12289, 12301, 12323, 12329, 12343, 12347, 12373, 12377,
12379, 12391, 12401, 12409, 12413, 12421, 12433, 12437, 12451, 12457,
12473, 12479, 12487, 12491, 12497, 12503, 12511, 12517, 12527, 12539,
12541, 12547, 12553, 12569, 12577, 12583, 12589, 12601, 12611, 12613,
12619, 12637, 12641, 12647, 12653, 12659, 12671, 12689, 12697, 12703,
12713, 12721, 12739, 12743, 12757, 12763, 12781, 12791, 12799, 12809,
12821, 12823, 12829, 12841, 12853, 12889, 12893, 12899, 12907, 12911,
12917, 12919, 12923, 12941, 12953, 12959, 12967, 12973, 12979, 12983,
13001, 13003, 13007, 13009, 13033, 13037, 13043, 13049, 13063, 13093,
13099, 13103, 13109, 13121, 13127, 13147, 13151, 13159, 13163, 13171,
13177, 13183, 13187, 13217, 13219, 13229, 13241, 13249, 13259, 13267,
13291, 13297, 13309, 13313, 13327, 13331, 13337, 13339, 13367, 13381,
13397, 13399, 13411, 13417, 13421, 13441, 13451, 13457, 13463, 13469,
13477, 13487, 13499, 13513, 13523, 13537, 13553, 13567, 13577, 13591,
13597, 13613, 13619, 13627, 13633, 13649, 13669, 13679, 13681, 13687,
13691, 13693, 13697, 13709, 13711, 13721, 13723, 13729, 13751, 13757,
13759, 13763, 13781, 13789, 13799, 13807, 13829, 13831, 13841, 13859,
13873, 13877, 13879, 13883, 13901, 13903, 13907, 13913, 13921, 13931,
13933, 13963, 13967, 13997, 13999, 14009, 14011, 14029, 14033, 14051,
14057, 14071, 14081, 14083, 14087, 14107, 14143, 14149, 14153, 14159,
14173, 14177, 14197, 14207, 14221, 14243, 14249, 14251, 14281, 14293,
14303, 14321, 14323, 14327, 14341, 14347, 14369, 14387, 14389, 14401,
14407, 14411, 14419, 14423, 14431, 14437, 14447, 14449, 14461, 14479,
14489, 14503, 14519, 14533, 14537, 14543, 14549, 14551, 14557, 14561,
14563, 14591, 14593, 14621, 14627, 14629, 14633, 14639, 14653, 14657,
14669, 14683, 14699, 14713, 14717, 14723, 14731, 14737, 14741, 14747,
14753, 14759, 14767, 14771, 14779, 14783, 14797, 14813, 14821, 14827,
14831, 14843, 14851, 14867, 14869, 14879, 14887, 14891, 14897, 14923,
14929, 14939, 14947, 14951, 14957, 14969, 14983, 15013, 15017, 15031,
15053, 15061, 15073, 15077, 15083, 15091, 15101, 15107, 15121, 15131,
15137, 15139, 15149, 15161, 15173, 15187, 15193, 15199, 15217, 15227,
15233, 15241, 15259, 15263, 15269, 15271, 15277, 15287, 15289, 15299,
15307, 15313, 15319, 15329, 15331, 15349, 15359, 15361, 15373, 15377,
15383, 15391, 15401, 15413, 15427, 15439, 15443, 15451, 15461, 15467,
15473, 15493, 15497, 15511, 15527, 15541, 15551, 15559, 15569, 15581,
15583, 15601, 15607, 15619, 15629, 15641, 15643, 15647, 15649, 15661,
15667, 15671, 15679, 15683, 15727, 15731, 15733, 15737, 15739, 15749,
15761, 15767, 15773, 15787, 15791, 15797, 15803, 15809, 15817, 15823,
15859, 15877, 15881, 15887, 15889, 15901, 15907, 15913, 15919, 15923,
15937, 15959, 15971, 15973, 15991, 16001, 16007, 16033, 16057, 16061,
16063, 16067, 16069, 16073, 16087, 16091, 16097, 16103, 16111, 16127,
16139, 16141, 16183, 16187, 16189, 16193, 16217, 16223, 16229, 16231,
16249, 16253, 16267, 16273, 16301, 16319, 16333, 16339, 16349, 16361,
16363, 16369, 16381, 16411, 16417, 16421, 16427, 16433, 16447, 16451,
16453, 16477, 16481, 16487, 16493, 16519, 16529, 16547, 16553, 16561,
16567, 16573, 16603, 16607, 16619, 16631, 16633, 16649, 16651, 16657,
16661, 16673, 16691, 16693, 16699, 16703, 16729, 16741, 16747, 16759,
16763, 16787, 16811, 16823, 16829, 16831, 16843, 16871, 16879, 16883,
16889, 16901, 16903, 16921, 16927, 16931, 16937, 16943, 16963, 16979,
16981, 16987, 16993, 17011, 17021, 17027, 17029, 17033, 17041, 17047,
17053, 17077, 17093, 17099, 17107, 17117, 17123, 17137, 17159, 17167,
17183, 17189, 17191, 17203, 17207, 17209, 17231, 17239, 17257, 17291,
17293, 17299, 17317, 17321, 17327, 17333, 17341, 17351, 17359, 17377,
17383, 17387, 17389, 17393, 17401, 17417, 17419, 17431, 17443, 17449,
17467, 17471, 17477, 17483, 17489, 17491, 17497, 17509, 17519, 17539,
17551, 17569, 17573, 17579, 17581, 17597, 17599, 17609, 17623, 17627,
17657, 17659, 17669, 17681, 17683, 17707, 17713, 17729, 17737, 17747,
17749, 17761, 17783, 17789, 17791, 17807, 17827, 17837, 17839, 17851,
17863,
]
def miller_rabin(n, k):
"""Run the Miller-Rabin test on n with at most k iterations
Arguments:
n (int): number whose primality is to be tested
k (int): maximum number of iterations to run
Returns:
bool: If n is prime, then True is returned. Otherwise, False is
returned, except with probability less than 4**-k.
See <https://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test>
"""
assert n > 3
# find r and d such that n-1 = 2^r × d
d = n-1
r = 0
while d % 2 == 0:
d //= 2
r += 1
assert n-1 == d * 2**r
assert d % 2 == 1
for _ in range(k): # each iteration divides risk of false prime by 4
a = random.randint(2, n-2) # choose a random witness
x = pow(a, d, n)
if x == 1 or x == n-1:
continue # go to next witness
for _ in range(1, r):
x = x*x % n
if x == n-1:
break # go to next witness
else:
return False
return True
def is_prime(n, mr_rounds=25):
"""Test whether n is probably prime
See <https://en.wikipedia.org/wiki/Primality_test#Probabilistic_tests>
Arguments:
n (int): the number to be tested
mr_rounds (int, optional): number of Miller-Rabin iterations to run;
defaults to 25 iterations, which is what the GMP library uses
Returns:
bool: when this function returns False, `n` is composite (not prime);
when it returns True, `n` is prime with overwhelming probability
"""
# as an optimization we quickly detect small primes using the list above
if n <= first_primes[-1]:
return n in first_primes
# for small dividors (relatively frequent), euclidean division is best
for p in first_primes:
if n % p == 0:
return False
# the actual generic test; give a false prime with probability 2⁻⁵⁰
return miller_rabin(n, mr_rounds)