-
Notifications
You must be signed in to change notification settings - Fork 0
/
optimization.py
78 lines (64 loc) · 2.92 KB
/
optimization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
from abc import ABC
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
from transformers import AdamW
from torch.optim import Adam
def build_optimizer(model, config):
bert_params, task_params = [], []
size = 0
for name, params in model.named_parameters():
if "bert" in name:
bert_params.append((name, params))
else:
task_params.append((name, params))
size += params.nelement() if params.requires_grad else 0
print("bert parameters")
for name, params in bert_params:
print('n: {}, shape: {}'.format(name, params.shape))
print('*' * 150)
print("task parameters")
for name, params in task_params:
print('n: {}, shape: {}'.format(name, params.shape))
no_decay = ["bias", "LayerNorm.bias", "LayerNorm.weight"]
bert_optimizer_grouped_parameters = [
{"params": [p for n, p in bert_params if not any(nd in n for nd in no_decay)], "weight_decay": 0.01},
{"params": [p for n, p in bert_params if any(nd in n for nd in no_decay)], "weight_decay": 0.0}]
task_optimizer_group_parameters = [p for _, p in task_params]
print('Total parameters: {}'.format(size))
bert_optimizer = AdamW(bert_optimizer_grouped_parameters,
lr=config['bert_learning_rate'],
betas=(0.9, 0.999),
eps=config['adam_eps'])
task_optimizer = Adam(task_optimizer_group_parameters,
lr=config['task_learning_rate'])
return bert_optimizer, task_optimizer
class FocalLoss(nn.Module, ABC):
def __init__(self, gamma=0, alpha=None, size_average=True):
super(FocalLoss, self).__init__()
self.gamma = gamma
self.alpha = alpha
if isinstance(alpha, (float, int)): self.alpha = torch.Tensor([alpha, 1 - alpha])
if isinstance(alpha, list): self.alpha = torch.Tensor(alpha)
self.size_average = size_average
def forward(self, input, target):
if input.dim() > 2:
input = input.view(input.size(0), input.size(1), -1) # N,C,H,W => N,C,H*W
input = input.transpose(1, 2) # N,C,H*W => N,H*W,C
input = input.contiguous().view(-1, input.size(2)) # N,H*W,C => N*H*W,C
target = target.view(-1, 1)
logpt = F.log_softmax(input)
logpt = logpt.gather(1, target)
logpt = logpt.view(-1)
pt = Variable(logpt.data.exp())
if self.alpha is not None:
if self.alpha.type() != input.data.type():
self.alpha = self.alpha.type_as(input.data)
at = self.alpha.gather(0, target.data.view(-1))
logpt = logpt * Variable(at)
loss = -1 * (1 - pt) ** self.gamma * logpt
if self.size_average:
return loss.mean()
else:
return loss.sum()