-
Notifications
You must be signed in to change notification settings - Fork 12
/
ff_abz_fibs_vf_vec.m
598 lines (510 loc) · 24.9 KB
/
ff_abz_fibs_vf_vec.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
%% Solve For+Inf+Borr+Save Dynamic Programming Problem (Vectorized)
% *back to <https://fanwangecon.github.io Fan>'s
% <https://fanwangecon.github.io/CodeDynaAsset/ Dynamic Assets Repository>
% Table of Content.*
%%
function result_map = ff_abz_fibs_vf_vec(varargin)
%% FF_ABZ_FIBS_VF_VEC solve infinite horizon exo shock + endo asset problem
% The model could be invoked mainly in sveral ways:
%
% # param_map('bl_default') = true; param_map('bl_bridge') = false;
% param_map('bl_rollover') = true; Given these, default is possible, bridge
% loans are not needed because rollover is allowed for formal loans (or
% informal loans)
% # we change param_map('bl_bridge') = true, that means
% rollover is still allowed, but only allowed using informal sources,
% formal loans no longer allow for roll-over. Furthermore, if both
% bl_bridge and bl_rollover are false, that means we are not allowing for
% rollover at all, so households can not borrow such that they end up with
% negative cash-on-hand.
%
% Default simulation bl_bridge = false.
%
% @param param_map container parameter container
%
% @param support_map container support container
%
% @param armt_map container container with states, choices and shocks
% grids that are inputs for grid based solution algorithm
%
% @param func_map container container with function handles for
% consumption cash-on-hand etc.
%
% @return result_map container contains policy function matrix, value
% function matrix, iteration results, and policy function, value function
% and iteration results tables.
%
% keys included in result_map:
%
% * mt_val matrix states_n by shock_n matrix of converged value function grid
% * mt_pol_a matrix states_n by shock_n matrix of converged policy function grid
% * ar_val_diff_norm array if bl_post = true it_iter_last by 1 val function
% difference between iteration
% * ar_pol_diff_norm array if bl_post = true it_iter_last by 1 policy
% function difference between iterations
% * mt_pol_perc_change matrix if bl_post = true it_iter_last by shock_n the
% proportion of grid points at which policy function changed between
% current and last iteration for each element of shock
%
% @example
%
% % Get Default Parameters
% it_param_set = 4;
% [param_map, support_map] = ffs_abz_fibs_set_default_param(it_param_set);
% % Chnage param_map keys for borrowing
% param_map('fl_b_bd') = -20; % borrow bound
% param_map('bl_default') = false; % true if allow for default
% param_map('fl_c_min') = 0.0001; % u(c_min) when default
% % Change Keys in param_map
% param_map('it_a_n') = 500;
% param_map('it_z_n') = 11;
% param_map('fl_a_max') = 100;
% param_map('fl_w') = 1.3;
% % Change Keys support_map
% support_map('bl_display') = false;
% support_map('bl_post') = true;
% support_map('bl_display_final') = false;
% % Call Program with external parameters that override defaults.
% ff_abz_fibs_vf_vec(param_map, support_map);
%
% @include
%
% * <https://fanwangecon.github.io/CodeDynaAsset/m_fibs/m_abz_paramfunc/html/ffs_abz_fibs_set_default_param.html ffs_abz_fibs_set_default_param>
% * <https://fanwangecon.github.io/CodeDynaAsset/m_fibs/m_abz_paramfunc/html/ffs_abz_fibs_get_funcgrid.html ffs_abz_fibs_get_funcgrid>
% * <https://fanwangecon.github.io/CodeDynaAsset/m_fibs/paramfunc_fibs/html/ffs_fibs_min_c_cost_bridge.html ffs_fibs_min_c_cost_bridge>
% * <https://fanwangecon.github.io/CodeDynaAsset/m_fibs/paramfunc_fibs/html/ffs_fibs_inf_bridge.html ffs_fibs_inf_bridge>
% * <https://fanwangecon.github.io/CodeDynaAsset/m_fibs/paramfunc_fibs/html/ffs_fibs_min_c_cost.html ffs_fibs_min_c_cost>
% * <https://fanwangecon.github.io/CodeDynaAsset/m_az/solvepost/html/ff_az_vf_post.html ff_az_vf_post>
%
% @seealso
%
% * for/inf + save + borr loop: <https://fanwangecon.github.io/CodeDynaAsset/m_fibs/m_abz_solve/html/ff_abz_fibs_vf.html ff_abz_fibs_vf>
% * for/inf + borr vectorized: <https://fanwangecon.github.io/CodeDynaAsset/m_fibs/m_abz_solve/html/ff_abz_fibs_vf_vec.html ff_abz_fibs_vf_vec>
% * for/inf + borr optimized-vectorized: <https://fanwangecon.github.io/CodeDynaAsset/m_fibs/m_abz_solve/html/ff_abz_fibs_vf_vecsv.html ff_abz_fibs_vf_vecsv>
%
%% Default
% * it_param_set = 1: quick test
% * it_param_set = 2: benchmark run
% * it_param_set = 3: benchmark profile
% * it_param_set = 4: press publish button
it_param_set = 3;
bl_input_override = true;
[param_map, support_map] = ffs_abz_fibs_set_default_param(it_param_set);
% Note: param_map and support_map can be adjusted here or outside to override defaults
% To generate results as if formal informal do not matter
% param_map('fl_r_fsv') = 0.025;
% param_map('fl_r_inf') = 0.035;
% param_map('fl_r_inf_bridge') = 0.035;
% param_map('fl_r_fbr') = 0.035;
% param_map('bl_b_is_principle') = false;
% param_map('st_forbrblk_type') = 'seg3';
% param_map('fl_forbrblk_brmost') = -19;
% param_map('fl_forbrblk_brleast') = -1;
% param_map('fl_forbrblk_gap') = -1.5;
% param_map('bl_b_is_principle') = false;
% param_map('it_a_n') = 750;
% param_map('it_z_n') = 15;
[armt_map, func_map] = ffs_abz_fibs_get_funcgrid(param_map, support_map, bl_input_override); % 1 for override
default_params = {param_map support_map armt_map func_map};
%% Parse Parameters 1
% if varargin only has param_map and support_map,
params_len = length(varargin);
[default_params{1:params_len}] = varargin{:};
param_map = [param_map; default_params{1}];
support_map = [support_map; default_params{2}];
if params_len >= 1 && params_len <= 2
% If override param_map, re-generate armt and func if they are not
% provided
bl_input_override = true;
[armt_map, func_map] = ffs_abz_fibs_get_funcgrid(param_map, support_map, bl_input_override);
else
% Override all
armt_map = [armt_map; default_params{3}];
func_map = [func_map; default_params{4}];
end
% append function name
st_func_name = 'ff_abz_fibs_vf_vec';
support_map('st_profile_name_main') = [st_func_name support_map('st_profile_name_main')];
support_map('st_mat_name_main') = [st_func_name support_map('st_mat_name_main')];
support_map('st_img_name_main') = [st_func_name support_map('st_img_name_main')];
%% Parse Parameters 2
% armt_map
params_group = values(armt_map, {'ar_a', 'mt_z_trans', 'ar_z'});
[ar_a, mt_z_trans, ar_z] = params_group{:};
% Formal choice Menu/Grid and Interest Rate Menu/Grid
params_group = values(armt_map, {'ar_forbrblk_r', 'ar_forbrblk'});
[ar_forbrblk_r, ar_forbrblk] = params_group{:};
% func_map
params_group = values(func_map, {'f_util_log', 'f_util_crra', 'f_coh', 'f_cons_coh_fbis', 'f_cons_coh_save'});
[f_util_log, f_util_crra, f_coh, f_cons_coh_fbis, f_cons_coh_save] = params_group{:};
% param_map
params_group = values(param_map, {'it_a_n', 'it_z_n', 'fl_crra', 'fl_beta', 'fl_c_min',...
'fl_nan_replace', 'bl_default', 'bl_bridge', 'bl_rollover', 'fl_default_aprime'});
[it_a_n, it_z_n, fl_crra, fl_beta, fl_c_min, ...
fl_nan_replace, bl_default, bl_bridge, bl_rollover, fl_default_aprime] = params_group{:};
params_group = values(param_map, {'it_maxiter_val', 'fl_tol_val', 'fl_tol_pol', 'it_tol_pol_nochange'});
[it_maxiter_val, fl_tol_val, fl_tol_pol, it_tol_pol_nochange] = params_group{:};
% param_map, Formal informal
params_group = values(param_map, {'fl_r_inf', 'fl_r_fsv', 'bl_b_is_principle'});
[fl_r_inf, fl_r_fsv, bl_b_is_principle] = params_group{:};
% support_map
params_group = values(support_map, {'bl_profile', 'st_profile_path', ...
'st_profile_prefix', 'st_profile_name_main', 'st_profile_suffix',...
'bl_display_minccost', 'bl_display_infbridge', ...
'bl_time', 'bl_display', 'it_display_every', 'bl_post'});
[bl_profile, st_profile_path, ...
st_profile_prefix, st_profile_name_main, st_profile_suffix, ...
bl_display_minccost, bl_display_infbridge, ...
bl_time, bl_display, it_display_every, bl_post] = params_group{:};
%% Initialize Output Matrixes
% include mt_pol_idx which we did not have in looped code
mt_val_cur = zeros(length(ar_a),length(ar_z));
mt_val = mt_val_cur - 1;
mt_pol_a = zeros(length(ar_a),length(ar_z));
mt_pol_a_cur = mt_pol_a - 1;
mt_pol_idx = zeros(length(ar_a),length(ar_z));
mt_pol_cons = zeros(length(ar_a),length(ar_z));
% collect optimal borrowing formal and informal choices
mt_pol_b_bridge = zeros(length(ar_a),length(ar_z));
mt_pol_inf_borr_nobridge = zeros(length(ar_a),length(ar_z));
mt_pol_for_borr = zeros(length(ar_a),length(ar_z));
mt_pol_for_save = zeros(length(ar_a),length(ar_z));
%% Initialize Convergence Conditions
bl_vfi_continue = true;
it_iter = 0;
ar_val_diff_norm = zeros([it_maxiter_val, 1]);
ar_pol_diff_norm = zeros([it_maxiter_val, 1]);
mt_pol_perc_change = zeros([it_maxiter_val, it_z_n]);
%% Iterate Value Function
% Loop solution with 4 nested loops
%
% # loop 1: over exogenous states
% # loop 2: over endogenous states
% # loop 3: over choices
% # loop 4: add future utility, integration--loop over future shocks
%
% Start Profile
if (bl_profile)
close all;
profile off;
profile on;
end
% Start Timer
if (bl_time)
tic;
end
% Value Function Iteration
while bl_vfi_continue
it_iter = it_iter + 1;
%% Solve Optimization Problem Current Iteration
% loop 1: over exogenous states
for it_z_i = 1:length(ar_z)
%% Solve the Formal Informal Problem for each a' and coh: c_forinf(a')
% find the today's consumption maximizing formal and informal
% choices given a' and coh. The formal and informal choices need to
% generate exactly a', but depending on which formal and informal
% joint choice is used, the consumption cost today a' is different.
% Note here, a is principle + interests. Three areas:
%
% * *CASE A* a' > 0: savings, do not need to optimize over formal and
% informal choices
% * *CASE B* a' < 0 & coh < 0: need bridge loan to pay for unpaid debt, and
% borrowing over-all, need to first pick bridge loan to pay for
% debt, if bridge loan is insufficient, go into default. After
% bridge loan, optimize over formal+informal, borrow+save joint
% choices.
% * *CASE C* a' < 0 & coh > 0: do not need to get informal bridge loans,
% optimize over for+inf save, for+save+borr, inf+borr only, for
% borrow only.
%
% 1. Current Shock
fl_z = ar_z(it_z_i);
% 2. cash-on-hand
ar_coh = f_coh(fl_z, ar_a);
% 3. *CASE A* initiate consumption matrix as if all save
mt_c = f_cons_coh_save(ar_coh, ar_a');
% 3. if Bridge Loan is Needed
% 4. *CASE B+C* get negative coh index and get borrowing choices index
ar_coh_neg_idx = (ar_coh <= 0);
ar_a_neg_idx = (ar_a < 0);
ar_coh_neg = ar_coh(ar_coh_neg_idx);
ar_a_neg = ar_a(ar_a_neg_idx);
% 5. if coh > 0 and ap < 0, can allow same for+inf result to all coh.
% The procedure below works regardless of how ar_coh is sorted. get
% the index of all negative coh elements as well as first
% non-negative element. We solve the formal and informal problem at
% these points, note that we only need to solve the formal and
% informal problem for positive coh level once.
ar_coh_first_pos_idx = (cumsum(ar_coh_neg_idx == 0) == 1);
ar_coh_forinfsolve_idx = (ar_coh_first_pos_idx | ar_coh_neg_idx);
ar_coh_forinfsolve_a_neg_idx = (ar_coh(ar_coh_forinfsolve_idx) <= 0);
% 6. *CASE B + C* Negative asset choices (borrowing), 1 col Case C
% negp1: negative coh + 1, 1 meaning 1 positive coh, first positive
% coh column index element grabbed.
mt_coh_negp1_mesh_neg_aprime = zeros(size(ar_a_neg')) + ar_coh(ar_coh_forinfsolve_idx);
mt_neg_aprime_mesh_coh_negp1 = zeros(size(mt_coh_negp1_mesh_neg_aprime)) + ar_a_neg';
if (bl_bridge)
% mt_neg_aprime_mesh_coh_1col4poscoh = zeros([length(ar_a_neg), (length(ar_coh_neg)+1)]) + ar_a_neg';
% ar_coh_neg_idx_1col4poscoh = ar_coh_neg_idx(1:(length(ar_coh_neg)+1));
% 6. *CASE B* Solve for: if (fl_ap < 0) and if (fl_coh < 0)
[mt_aprime_nobridge_negcoh, ~, mt_c_bridge_negcoh] = ffs_fibs_inf_bridge(...
bl_b_is_principle, fl_r_inf, ...
mt_neg_aprime_mesh_coh_negp1(:,ar_coh_forinfsolve_a_neg_idx), ...
mt_coh_negp1_mesh_neg_aprime(:,ar_coh_forinfsolve_a_neg_idx), ...
bl_display_infbridge, bl_input_override);
% generate mt_aprime_nobridge
mt_neg_aprime_mesh_coh_negp1(:, ar_coh_forinfsolve_a_neg_idx) = mt_aprime_nobridge_negcoh;
else
% no bridge loan needed means roll over is allowed.
mt_neg_aprime_mesh_coh_negp1 = ar_a_neg';
end
% 7. *CASE B + C* formal and informal joint choices, 1 col Case C
bl_input_override = true;
[ar_max_c_nobridge, ~, ~, ~] = ...
ffs_fibs_min_c_cost(...
bl_b_is_principle, fl_r_inf, fl_r_fsv, ...
ar_forbrblk_r, ar_forbrblk, ...
mt_neg_aprime_mesh_coh_negp1(:), ...
bl_display_minccost, bl_input_override);
%% Update Consumption Matrix *CASE A + B + C* Consumptions
% Current mt_c is assuming all to be case A
%
% * Update Columns for case B (negative coh)
% * Update Columns for case C (1 column): ar_coh_first_pos_idx,
% included in ar_coh_forinfsolve_idx
% * Update Columns for all case C: ~ar_coh_neg_idx using 1 column
% result
%
% 1. Initalize all Neg Aprime consumption cost of aprime inputs
% Initialize
mt_max_c_nobridge_a_neg = zeros([length(ar_a_neg), length(ar_coh)]) + 0;
mt_c_bridge_coh_a_neg = zeros(size(mt_max_c_nobridge_a_neg)) + 0;
% 2. Fill in *Case B* and *Case C* (one column) Other C-cost
mt_max_c_nobridge_negcohp1 = reshape(ar_max_c_nobridge, [size(mt_neg_aprime_mesh_coh_negp1)]);
if (bl_bridge)
% 2. Fill in *Case B* Bridge C-cost
mt_c_bridge_coh_a_neg(:, ar_coh_neg_idx) = mt_c_bridge_negcoh;
% 2. Fill in *Case B* and *Case C* (one column) Other C-cost
mt_max_c_nobridge_a_neg(:, ar_coh_forinfsolve_idx) = mt_max_c_nobridge_negcohp1;
mt_max_c_nobridge_a_neg(:, ~ar_coh_forinfsolve_idx) = ...
zeros(size(mt_c(ar_a_neg_idx, ~ar_coh_forinfsolve_idx))) ...
+ mt_max_c_nobridge_negcohp1(:, ~ar_coh_forinfsolve_a_neg_idx);
else
mt_max_c_nobridge_a_neg = zeros([length(ar_a_neg), length(ar_coh)]) + mt_max_c_nobridge_negcohp1;
end
% 3. Consumption for B + C Cases
% note, the c cost of aprime is the same for all coh > 0, but mt_c
% is different still for each coh and aprime.
mt_c_forinfsolve = f_cons_coh_fbis(ar_coh, mt_c_bridge_coh_a_neg + mt_max_c_nobridge_a_neg);
% 4. Update with Case B and C
mt_c(ar_a_neg_idx, :) = mt_c_forinfsolve;
%% Solve Optimization Problem: max_{a'} (u(c_forinf(a')) + EV(a',z'))
% 1. EVAL current utility: N by N, f_util defined earlier
if (fl_crra == 1)
mt_utility = f_util_log(mt_c);
fl_u_cmin = f_util_log(fl_c_min);
else
mt_utility = f_util_crra(mt_c);
fl_u_cmin = f_util_crra(fl_c_min);
end
% 2. f(z'|z)
ar_z_trans_condi = mt_z_trans(it_z_i,:);
% 3. EVAL EV((A',K'),Z'|Z) = V((A',K'),Z') x p(z'|z)', (N by Z) x (Z by 1) = N by 1
% Note: transpose ar_z_trans_condi from 1 by Z to Z by 1
% Note: matrix multiply not dot multiply
mt_evzp_condi_z = mt_val_cur * ar_z_trans_condi';
% 4. EVAL add on future utility, N by N + N by 1, broadcast again
mt_utility = mt_utility + fl_beta*mt_evzp_condi_z;
if (bl_default)
% if default: only today u(cmin), transition out next period, debt wiped out
mt_utility(mt_c <= fl_c_min) = fl_u_cmin + fl_beta*mt_evzp_condi_z(ar_a == fl_default_aprime);
else
% if default is not allowed: v = fl_nan_replace
mt_utility(mt_c <= fl_c_min) = fl_nan_replace;
end
% Set below threshold c to c_min
mt_c(mt_c < fl_c_min) = fl_c_min;
% 5. no bridge and no rollover allowed
if( ~bl_rollover && ~bl_bridge)
if (bl_default)
% if default: only today u(cmin), transition out next period, debt wiped out
mt_utility(:, ar_coh_neg_idx) = fl_u_cmin + fl_beta*mt_evzp_condi_z(ar_a == fl_default_aprime);
else
% if default is not allowed: v = fl_nan_replace
mt_utility(:, ar_coh_neg_idx) = fl_nan_replace;
end
end
% 5. Optimization: remember matlab is column major, rows must be
% choices, columns must be states
% <https://en.wikipedia.org/wiki/Row-_and_column-major_order COLUMN-MAJOR>
% mt_utility is N by N, rows are choices, cols are states.
[ar_opti_val_z, ar_opti_idx_z] = max(mt_utility);
[it_choies_n, it_states_n] = size(mt_utility);
ar_add_grid = linspace(0, it_choies_n*(it_states_n-1), it_states_n);
ar_opti_linear_idx_z = ar_opti_idx_z + ar_add_grid;
ar_opti_aprime_z = ar_a(ar_opti_idx_z);
ar_opti_c_z = mt_c(ar_opti_linear_idx_z);
% 6. Handle Default is optimal or not
if (bl_default)
% if defaulting is optimal choice, at these states, not required
% to default, non-default possible, but default could be optimal
ar_opti_aprime_z(ar_opti_c_z <= fl_c_min) = fl_default_aprime;
ar_opti_idx_z(ar_opti_c_z <= fl_c_min) = find(ar_a == fl_default_aprime);
else
% if default is not allowed, then next period same state as now
% this is absorbing state, this is the limiting case, single
% state space point, lowest a and lowest shock has this.
ar_opti_aprime_z(ar_opti_c_z <= fl_c_min) = min(ar_a);
end
% 6. no bridge and no rollover allowed
if( ~bl_rollover && ~bl_bridge)
if (bl_default)
% if default: only today u(cmin), transition out next period, debt wiped out
ar_opti_aprime_z(ar_coh_neg_idx) = fl_default_aprime;
else
% if default is not allowed: v = fl_nan_replace
ar_opti_aprime_z(ar_coh_neg_idx) = ar_a(fl_nan_replace);
end
end
%% Store Optimal Choices Current Iteration
mt_val(:,it_z_i) = ar_opti_val_z;
mt_pol_a(:,it_z_i) = ar_opti_aprime_z;
mt_pol_cons(:,it_z_i) = ar_opti_c_z;
if (it_iter == (it_maxiter_val + 1))
mt_pol_idx(:,it_z_i) = ar_opti_idx_z;
end
end
%% Check Tolerance and Continuation
% Difference across iterations
ar_val_diff_norm(it_iter) = norm(mt_val - mt_val_cur);
ar_pol_diff_norm(it_iter) = norm(mt_pol_a - mt_pol_a_cur);
mt_pol_perc_change(it_iter, :) = sum((mt_pol_a ~= mt_pol_a_cur))/(it_a_n);
% Update
mt_val_cur = mt_val;
mt_pol_a_cur = mt_pol_a;
% Print Iteration Results
if (bl_display && (rem(it_iter, it_display_every)==0))
fprintf('VAL it_iter:%d, fl_diff:%d, fl_diff_pol:%d\n', ...
it_iter, ar_val_diff_norm(it_iter), ar_pol_diff_norm(it_iter));
tb_valpol_iter = array2table([mean(mt_val_cur,1); mean(mt_pol_a_cur,1); ...
mt_val_cur(it_a_n,:); mt_pol_a_cur(it_a_n,:)]);
tb_valpol_iter.Properties.VariableNames = strcat('z', string((1:size(mt_val_cur,2))));
tb_valpol_iter.Properties.RowNames = {'mval', 'map', 'Hval', 'Hap'};
disp('mval = mean(mt_val_cur,1), average value over a')
disp('map = mean(mt_pol_a_cur,1), average choice over a')
disp('Hval = mt_val_cur(it_a_n,:), highest a state val')
disp('Hap = mt_pol_a_cur(it_a_n,:), highest a state choice')
disp(tb_valpol_iter);
end
% Continuation Conditions:
% 1. if value function convergence criteria reached
% 2. if policy function variation over iterations is less than
% threshold
if (it_iter == (it_maxiter_val + 1))
bl_vfi_continue = false;
elseif ((it_iter == it_maxiter_val) || ...
(ar_val_diff_norm(it_iter) < fl_tol_val) || ...
(sum(ar_pol_diff_norm(max(1, it_iter-it_tol_pol_nochange):it_iter)) < fl_tol_pol))
% Fix to max, run again to save results if needed
it_iter_last = it_iter;
it_iter = it_maxiter_val;
end
end
% End Timer
if (bl_time)
toc;
end
% End Profile
if (bl_profile)
profile off
profile viewer
st_file_name = [st_profile_prefix st_profile_name_main st_profile_suffix];
profsave(profile('info'), strcat(st_profile_path, st_file_name));
end
%% Process Optimal Choices
result_map = containers.Map('KeyType','char', 'ValueType','any');
result_map('mt_val') = mt_val;
result_map('mt_pol_idx') = mt_pol_idx;
% Find optimal Formal Informal Choices. Could have saved earlier, but was
% wasteful of resources
for it_z_i = 1:length(ar_z)
for it_a_j = 1:length(ar_a)
fl_z = ar_z(it_z_i);
fl_a = ar_a(it_a_j);
fl_coh = f_coh(fl_z, fl_a);
fl_a_opti = mt_pol_a(it_a_j, it_z_i);
% call formal and informal function.
[~, fl_opti_b_bridge, fl_opti_inf_borr_nobridge, fl_opti_for_borr, fl_opti_for_save] = ...
ffs_fibs_min_c_cost_bridge(fl_a_opti, fl_coh, ...
param_map, support_map, armt_map, func_map, bl_input_override);
% store savings and borrowing formal and inf optimal choices
mt_pol_b_bridge(it_a_j,it_z_i) = fl_opti_b_bridge;
mt_pol_inf_borr_nobridge(it_a_j,it_z_i) = fl_opti_inf_borr_nobridge;
mt_pol_for_borr(it_a_j,it_z_i) = fl_opti_for_borr;
mt_pol_for_save(it_a_j,it_z_i) = fl_opti_for_save;
end
end
result_map('cl_mt_pol_a') = {mt_pol_a, zeros(1)};
result_map('cl_mt_coh') = {f_coh(ar_z, ar_a'), zeros(1)};
result_map('cl_mt_pol_c') = {mt_pol_cons, zeros(1)};
result_map('cl_mt_pol_b_bridge') = {mt_pol_b_bridge, zeros(1)};
result_map('cl_mt_pol_inf_borr_nobridge') = {mt_pol_inf_borr_nobridge, zeros(1)};
result_map('cl_mt_pol_for_borr') = {mt_pol_for_borr, zeros(1)};
result_map('cl_mt_pol_for_save') = {mt_pol_for_save, zeros(1)};
result_map('ar_st_pol_names') = ["cl_mt_pol_a", "cl_mt_coh", "cl_mt_pol_c", ...
"cl_mt_pol_b_bridge", "cl_mt_pol_inf_borr_nobridge", "cl_mt_pol_for_borr", "cl_mt_pol_for_save"];
% Get Discrete Choice Outcomes
result_map = ffs_fibs_identify_discrete(result_map, bl_input_override);
%% Post Solution Graph and Table Generation
% Note in comparison with *abz*, results here, even when using identical
% parameters would differ because in *abz* solved where choices are
% principle. Here choices are principle + interests in order to facilitate
% using the informal choice functions.
%
% Note that this means two things are
% different, on the one hand, the value of asset for to coh is different
% based on the grid of assets. If the asset grid is negative, now per grid
% point, there is more coh because that grid point of asset no longer has
% interest rates. On the other hand, if one has positive asset grid point
% on arrival, that is worth less to coh. Additionally, when making choices
% for the next period, now choices aprime includes interests. What these
% mean is that the a grid no longer has the same meaning. We should expect
% at higher savings levels, for the same grid points, if optimal grid
% choices are the same as before, consumption should be lower when b
% includes interest rates and principle. This is however, not true when
% arriving in a period with negative a levels, for the same negative a
% level and same a prime negative choice, could have higher consumption
% here becasue have to pay less interests on debt. This tends to happen for
% smaller levels of borrowing choices.
%
% Graphically, when using interest + principle, big difference in
% consumption as a fraction of (coh - aprime) figure. In those figures,
% when counting in principles only, the gap in coh and aprime is
% consumption, but now, as more is borrowed only a small fraction of coh
% and aprime gap is consumption, becuase aprime/(1+r) is put into
% consumption.
if (bl_post)
bl_input_override = true;
result_map('ar_val_diff_norm') = ar_val_diff_norm(1:it_iter_last);
result_map('ar_pol_diff_norm') = ar_pol_diff_norm(1:it_iter_last);
result_map('mt_pol_perc_change') = mt_pol_perc_change(1:it_iter_last, :);
% Standard AZ graphs
result_map = ff_az_vf_post(param_map, support_map, armt_map, func_map, result_map, bl_input_override);
% Graphs for results_map with FIBS contents
result_map = ff_az_fibs_vf_post(param_map, support_map, armt_map, func_map, result_map, bl_input_override);
end
%% Display Various Containers
bl_display_defparam = true;
if (bl_display_defparam)
%% Display 1 support_map
fft_container_map_display(support_map);
%% Display 2 armt_map
fft_container_map_display(armt_map);
%% Display 3 param_map
fft_container_map_display(param_map);
%% Display 4 func_map
fft_container_map_display(func_map);
%% Display 5 result_map
fft_container_map_display(result_map);
end
end