-
Notifications
You must be signed in to change notification settings - Fork 12
/
ff_abz_vf_vecsv.m
419 lines (358 loc) · 16.8 KB
/
ff_abz_vf_vecsv.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
%% Solve Save + Borr (RShock) Dynamic Programming Problem (Optimized-Vectorized)
% *back to <https://fanwangecon.github.io Fan>'s
% <https://fanwangecon.github.io/CodeDynaAsset/ Dynamic Assets Repository>
% Table of Content.*
%%
function result_map = ff_abz_vf_vecsv(varargin)
%% FF_ABZ_VF_VECSV solve infinite horizon exo shock + endo asset problem
% This program solves the infinite horizon dynamic single asset and two
% shocks problem with vectorized codes.
% <https://fanwangecon.github.io/CodeDynaAsset/m_abz/solve/html/ff_abz_vf.html
% ff_abz_vf> shows looped codes.
% <https://fanwangecon.github.io/CodeDynaAsset/m_abz/solve/html/ff_abz_vf_vec.html
% ff_abz_vf_vec> shows vectorized codes. This file shows vectorized codes
% that is faster but is more memory intensive.
%
% The borrowing problem is similar to the savings problem. The main
% addition here in comparison to the savings only code
% <https://fanwangecon.github.io/CodeDynaAsset/m_az/solve/html/ff_az_vf_vecsv.html
% ff_az_vf_vec> is the ability to deal with default, as well as an
% additional shock to the borrowing interest rate.
%
% See
% <https://fanwangecon.github.io/CodeDynaAsset/m_abz/solve/html/ff_abz_vf_vec.html
% ff_az_vf_vec> how vectorization works within this structure.
%
% This _optimized-vectorized_ solution method provides very large speed
% improvements for this infinite horizon problem because the u(c(z,a,a'))
% calculation within each iteration is identical. Generally the idea is to
% identify inside iteration whether the model is infinite horizon or
% life-cycle based where repeat calculations are taking place. If such
% calculations can be identified, then potentially they could be stored and
% retrieved during future iterations/periods rather than recomputed every
% time. This saves time.
%
% @param param_map container parameter container
%
% @param support_map container support container
%
% @param armt_map container container with states, choices and shocks
% grids that are inputs for grid based solution algorithm
%
% @param func_map container container with function handles for
% consumption cash-on-hand etc.
%
% @return result_map container contains policy function matrix, value
% function matrix, iteration results, and policy function, value function
% and iteration results tables.
%
% keys included in result_map:
%
% * mt_val matrix states_n by shock_n matrix of converged value function grid
% * mt_pol_a matrix states_n by shock_n matrix of converged policy function grid
% * ar_val_diff_norm array if bl_post = true it_iter_last by 1 val function
% difference between iteration
% * ar_pol_diff_norm array if bl_post = true it_iter_last by 1 policy
% function difference between iterations
% * mt_pol_perc_change matrix if bl_post = true it_iter_last by shock_n the
% proportion of grid points at which policy function changed between
% current and last iteration for each element of shock
%
% @example
%
% % Get Default Parameters
% it_param_set = 2;
% [param_map, support_map] = ffs_abz_set_default_param(it_param_set);
% % Chnage param_map keys for borrowing
% param_map('fl_b_bd') = -20; % borrow bound
% param_map('bl_default') = false; % true if allow for default
% param_map('fl_c_min') = 0.0001; % u(c_min) when default
% % Change Keys in param_map
% param_map('it_a_n') = 500;
% param_map('fl_z_r_borr_n') = 5;
% param_map('it_z_wage_n') = 15;
% param_map('it_z_n') = param_map('it_z_wage_n') * param_map('fl_z_r_borr_n');
% param_map('fl_a_max') = 100;
% param_map('fl_w') = 1.3;
% % Change Keys support_map
% support_map('bl_display') = false;
% support_map('bl_post') = true;
% support_map('bl_display_final') = false;
% % Call Program with external parameters that override defaults.
% ff_abz_vf_vecsv(param_map, support_map);
%
% @include
%
% * <https://fanwangecon.github.io/CodeDynaAsset/m_abz/paramfunc/html/ffs_abz_set_default_param.html ffs_abz_set_default_param>
% * <https://fanwangecon.github.io/CodeDynaAsset/m_abz/paramfunc/html/ffs_abz_get_funcgrid.html ffs_abz_get_funcgrid>
% * <https://fanwangecon.github.io/CodeDynaAsset/m_az/solvepost/html/ff_az_vf_post.html ff_az_vf_post>
%
% @seealso
%
% * save loop: <https://fanwangecon.github.io/CodeDynaAsset/m_az/solve/html/ff_az_vf.html ff_az_vf>
% * save vectorized: <https://fanwangecon.github.io/CodeDynaAsset/m_az/solve/html/ff_az_vf_vec.html ff_az_vf_vec>
% * save optimized-vectorized: <https://fanwangecon.github.io/CodeDynaAsset/m_az/solve/html/ff_az_vf_vecsv.html ff_az_vf_vecsv>
% * save + borr loop: <https://fanwangecon.github.io/CodeDynaAsset/m_abz/solve/html/ff_abz_vf.html ff_abz_vf>
% * save + borr vectorized: <https://fanwangecon.github.io/CodeDynaAsset/m_abz/solve/html/ff_abz_vf_vec.html ff_abz_vf_vec>
% * save + borr optimized-vectorized: <https://fanwangecon.github.io/CodeDynaAsset/m_abz/solve/html/ff_abz_vf_vecsv.html ff_abz_vf_vecsv>
%
%% Default
%
% * it_param_set = 1: quick test
% * it_param_set = 2: benchmark run
% * it_param_set = 3: benchmark profile
% * it_param_set = 4: press publish button
%
it_param_set = 4;
[param_map, support_map] = ffs_abz_set_default_param(it_param_set);
% Note: param_map and support_map can be adjusted here or outside to override defaults
% param_map('it_a_n') = 750;
% param_map('fl_z_r_borr_n') = 5;
% param_map('it_z_wage_n') = 15;
% param_map('it_z_n') = param_map('it_z_wage_n') * param_map('fl_z_r_borr_n');
% param_map('fl_r_save') = 0.025;
% param_map('fl_z_r_borr_poiss_mean') = 1.75;
[armt_map, func_map] = ffs_abz_get_funcgrid(param_map, support_map); % 1 for override
default_params = {param_map support_map armt_map func_map};
%% Parse Parameters 1
% if varargin only has param_map and support_map,
params_len = length(varargin);
[default_params{1:params_len}] = varargin{:};
param_map = [param_map; default_params{1}];
support_map = [support_map; default_params{2}];
if params_len >= 1 && params_len <= 2
% If override param_map, re-generate armt and func if they are not
% provided
[armt_map, func_map] = ffs_abz_get_funcgrid(param_map, support_map);
else
% Override all
armt_map = [armt_map; default_params{3}];
func_map = [func_map; default_params{4}];
end
% append function name
st_func_name = 'ff_abz_vf_vecsv';
support_map('st_profile_name_main') = [st_func_name support_map('st_profile_name_main')];
support_map('st_mat_name_main') = [st_func_name support_map('st_mat_name_main')];
support_map('st_img_name_main') = [st_func_name support_map('st_img_name_main')];
%% Parse Parameters 2
% armt_map
params_group = values(armt_map, {'ar_a', 'mt_z_trans', 'ar_z_r_borr_mesh_wage', 'ar_z_wage_mesh_r_borr'});
[ar_a, mt_z_trans, ar_z_r_borr_mesh_wage, ar_z_wage_mesh_r_borr] = params_group{:};
% func_map
params_group = values(func_map, {'f_util_log', 'f_util_crra', 'f_cons_checkcmin', 'f_awithr_to_anor', 'f_coh', 'f_cons_coh'});
[f_util_log, f_util_crra, f_cons_checkcmin, f_awithr_to_anor, f_coh, f_cons_coh] = params_group{:};
% param_map
params_group = values(param_map, {'it_a_n', 'it_z_n', 'fl_crra', 'fl_beta', 'fl_c_min',...
'fl_nan_replace', 'bl_default', 'fl_default_aprime'});
[it_a_n, it_z_n, fl_crra, fl_beta, fl_c_min, ...
fl_nan_replace, bl_default, fl_default_aprime] = params_group{:};
params_group = values(param_map, {'it_maxiter_val', 'fl_tol_val', 'fl_tol_pol', 'it_tol_pol_nochange'});
[it_maxiter_val, fl_tol_val, fl_tol_pol, it_tol_pol_nochange] = params_group{:};
% support_map
params_group = values(support_map, {'bl_profile', 'st_profile_path', ...
'st_profile_prefix', 'st_profile_name_main', 'st_profile_suffix',...
'bl_time', 'bl_display_defparam', 'bl_display', 'it_display_every', 'bl_post'});
[bl_profile, st_profile_path, ...
st_profile_prefix, st_profile_name_main, st_profile_suffix, ...
bl_time, bl_display_defparam, bl_display, it_display_every, bl_post] = params_group{:};
params_group = values(support_map, {'it_display_summmat_rowmax', 'it_display_summmat_colmax'});
[it_display_summmat_rowmax, it_display_summmat_colmax] = params_group{:};
%% Initialize Output Matrixes
% include mt_pol_idx which we did not have in looped code
mt_val_cur = zeros(it_a_n, it_z_n);
mt_val = mt_val_cur - 1;
mt_pol_a = zeros(it_a_n, it_z_n);
mt_pol_a_cur = mt_pol_a - 1;
mt_pol_idx = zeros(it_a_n, it_z_n);
% We did not need these in ff_abz_vf or ff_abz_vf_vec
% see
% <https://fanwangecon.github.io/M4Econ/support/speed/partupdate/fs_u_c_partrepeat_main.html
% fs_u_c_partrepeat_main> for why store using cells.
cl_u_c_store = cell([it_z_n, 1]);
cl_c_valid_idx = cell([it_z_n, 1]);
%% Initialize Convergence Conditions
bl_vfi_continue = true;
it_iter = 0;
ar_val_diff_norm = zeros([it_maxiter_val, 1]);
ar_pol_diff_norm = zeros([it_maxiter_val, 1]);
mt_pol_perc_change = zeros([it_maxiter_val, it_z_n]);
%% Iterate Value Function
% Loop solution with 4 nested loops
%
% # loop 1: over exogenous states
% # loop 2: over endogenous states
% # loop 3: over choices
% # loop 4: add future utility, integration--loop over future shocks
%
% Start Profile
if (bl_profile)
close all;
profile off;
profile on;
end
% Start Timer
if (bl_time)
tic;
end
% Value Function Iteration
while bl_vfi_continue
it_iter = it_iter + 1;
%% Solve Optimization Problem Current Iteration
% Only this segment of code differs between ff_abz_vf and ff_abz_vf_vec
% Store in cells results and retrieve, this is more memory intensive
% than ff_abz_vf_vec.
% loop 1: over exogenous states
for it_z_i = 1:it_z_n
% Current Shock
fl_z_r_borr = ar_z_r_borr_mesh_wage(it_z_i);
fl_z_wage = ar_z_wage_mesh_r_borr(it_z_i);
% cash-on-hand
ar_coh = f_coh(fl_z_wage, ar_a);
% Consumption and u(c) only need to be evaluated once
if (it_iter == 1)
% Consumption: fl_z = 1 by 1, ar_a = 1 by N, ar_a' = N by 1
% mt_c is N by N: matrix broadcasting, expand to matrix from arrays
mt_c = f_cons_coh(ar_coh, fl_z_r_borr, ar_a');
% EVAL current utility: N by N, f_util defined earlier
% slightly faster to explicitly write function
if (fl_crra == 1)
mt_utility = log(mt_c);
fl_u_cmin = f_util_log(fl_c_min);
else
% slightly faster if write function here directly, but
% speed gain is very small, more important to have single
% location control of functions.
mt_utility = f_util_crra(mt_c);
fl_u_cmin = f_util_crra(fl_c_min);
end
% Eliminate Complex Numbers
mt_it_c_valid_idx = (mt_c <= fl_c_min);
mt_utility(mt_it_c_valid_idx) = fl_u_cmin;
% Store in cells
cl_u_c_store{it_z_i} = mt_utility;
cl_c_valid_idx{it_z_i} = mt_it_c_valid_idx;
end
% f(z'|z)
ar_z_trans_condi = mt_z_trans(it_z_i,:);
% EVAL EV((A',K'),Z'|Z) = V((A',K'),Z') x p(z'|z)', (N by Z) x (Z by 1) = N by 1
% Note: transpose ar_z_trans_condi from 1 by Z to Z by 1
% Note: matrix multiply not dot multiply
mt_evzp_condi_z = mt_val_cur * ar_z_trans_condi';
% EVAL add on future utility, N by N + N by 1
mt_utility = cl_u_c_store{it_z_i} + fl_beta*mt_evzp_condi_z;
% Index update
% using the method below is much faster than index replace
% see <https://fanwangecon.github.io/M4Econ/support/speed/index/fs_subscript.html fs_subscript>
mt_it_c_valid_idx = cl_c_valid_idx{it_z_i};
% Default or Not Utility Handling
if (bl_default)
% if default: only today u(cmin), transition out next period, debt wiped out
fl_v_default = fl_u_cmin + fl_beta*mt_evzp_condi_z(ar_a == fl_default_aprime);
mt_utility = mt_utility.*(~mt_it_c_valid_idx) + fl_v_default*(mt_it_c_valid_idx);
else
% if default is not allowed: v = u(cmin)
mt_utility = mt_utility.*(~mt_it_c_valid_idx) + fl_nan_replace*(mt_it_c_valid_idx);
end
% Optimization: remember matlab is column major, rows must be
% choices, columns must be states
% <https://en.wikipedia.org/wiki/Row-_and_column-major_order COLUMN-MAJOR>
% mt_utility is N by N, rows are choices, cols are states.
[ar_opti_val_z, ar_opti_idx_z] = max(mt_utility);
ar_opti_aprime_z = ar_a(ar_opti_idx_z);
ar_opti_c_z = f_cons_coh(ar_coh, fl_z_r_borr, ar_opti_aprime_z);
% Handle Default is optimal or not
if (bl_default)
% if defaulting is optimal choice, at these states, not required
% to default, non-default possible, but default could be optimal
ar_opti_aprime_z(ar_opti_c_z <= fl_c_min) = fl_default_aprime;
ar_opti_idx_z(ar_opti_c_z <= fl_c_min) = find(ar_a == fl_default_aprime);
else
% if default is not allowed, then next period same state as now
% this is absorbing state, this is the limiting case, single
% state space point, lowest a and lowest shock has this.
ar_opti_aprime_z(ar_opti_c_z <= fl_c_min) = ar_a(ar_opti_c_z <= fl_c_min);
end
% store optimal values
mt_val(:,it_z_i) = ar_opti_val_z;
mt_pol_a(:,it_z_i) = ar_opti_aprime_z;
if (it_iter == (it_maxiter_val + 1))
mt_pol_idx(:,it_z_i) = ar_opti_idx_z;
end
end
%% Check Tolerance and Continuation
% Difference across iterations
ar_val_diff_norm(it_iter) = norm(mt_val - mt_val_cur);
ar_pol_diff_norm(it_iter) = norm(mt_pol_a - mt_pol_a_cur);
mt_pol_perc_change(it_iter, :) = sum((mt_pol_a ~= mt_pol_a_cur))/(it_a_n);
% Update
mt_val_cur = mt_val;
mt_pol_a_cur = mt_pol_a;
% Print Iteration Results
if (bl_display && (rem(it_iter, it_display_every)==0))
fprintf('VAL it_iter:%d, fl_diff:%d, fl_diff_pol:%d\n', ...
it_iter, ar_val_diff_norm(it_iter), ar_pol_diff_norm(it_iter));
tb_valpol_iter = array2table([mean(mt_val_cur,1); mean(mt_pol_a_cur,1); ...
mt_val_cur(it_a_n,:); mt_pol_a_cur(it_a_n,:)]);
tb_valpol_iter.Properties.VariableNames = strcat('z', string((1:size(mt_val_cur,2))));
tb_valpol_iter.Properties.RowNames = {'mval', 'map', 'Hval', 'Hap'};
disp('mval = mean(mt_val_cur,1), average value over a')
disp('map = mean(mt_pol_a_cur,1), average choice over a')
disp('Hval = mt_val_cur(it_a_n,:), highest a state val')
disp('Hap = mt_pol_a_cur(it_a_n,:), highest a state choice')
disp(tb_valpol_iter);
end
% Continuation Conditions:
% 1. if value function convergence criteria reached
% 2. if policy function variation over iterations is less than
% threshold
if (it_iter == (it_maxiter_val + 1))
bl_vfi_continue = false;
elseif ((it_iter == it_maxiter_val) || ...
(ar_val_diff_norm(it_iter) < fl_tol_val) || ...
(sum(ar_pol_diff_norm(max(1, it_iter-it_tol_pol_nochange):it_iter)) < fl_tol_pol))
% Fix to max, run again to save results if needed
it_iter_last = it_iter;
it_iter = it_maxiter_val;
end
end
% End Timer
if (bl_time)
toc;
end
% End Profile
if (bl_profile)
profile off
profile viewer
st_file_name = [st_profile_prefix st_profile_name_main st_profile_suffix];
profsave(profile('info'), strcat(st_profile_path, st_file_name));
end
%% Process Optimal Choices
result_map = containers.Map('KeyType','char', 'ValueType','any');
result_map('mt_val') = mt_val;
result_map('mt_pol_idx') = mt_pol_idx;
result_map('cl_mt_val') = {mt_val, zeros(1)};
result_map('cl_mt_coh') = {f_coh(ar_z_r_borr_mesh_wage, ar_a'), zeros(1)};
result_map('cl_mt_pol_a') = {f_awithr_to_anor(ar_z_r_borr_mesh_wage, mt_pol_a), zeros(1)};
result_map('cl_mt_pol_c') = {f_cons_checkcmin(ar_z_r_borr_mesh_wage, ar_z_wage_mesh_r_borr, ar_a', mt_pol_a), zeros(1)};
result_map('ar_st_pol_names') = ["cl_mt_val", "cl_mt_pol_a", "cl_mt_coh", "cl_mt_pol_c"];
if (bl_post)
bl_input_override = true;
result_map('ar_val_diff_norm') = ar_val_diff_norm(1:it_iter_last);
result_map('ar_pol_diff_norm') = ar_pol_diff_norm(1:it_iter_last);
result_map('mt_pol_perc_change') = mt_pol_perc_change(1:it_iter_last, :);
result_map = ff_az_vf_post(param_map, support_map, armt_map, func_map, result_map, bl_input_override);
end
%% Display Various Containers
if (bl_display_defparam)
%% Display 1 support_map
fft_container_map_display(support_map, it_display_summmat_rowmax, it_display_summmat_colmax);
%% Display 2 armt_map
fft_container_map_display(armt_map, it_display_summmat_rowmax, it_display_summmat_colmax);
%% Display 3 param_map
fft_container_map_display(param_map, it_display_summmat_rowmax, it_display_summmat_colmax);
%% Display 4 func_map
fft_container_map_display(func_map, it_display_summmat_rowmax, it_display_summmat_colmax);
%% Display 5 result_map
fft_container_map_display(result_map, it_display_summmat_rowmax, it_display_summmat_colmax);
end
end