-
Notifications
You must be signed in to change notification settings - Fork 419
/
generate.py
201 lines (180 loc) · 6.62 KB
/
generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import sys
import torch
from peft import PeftModel, PeftModelForCausalLM, LoraConfig
import transformers
import gradio as gr
import argparse
import warnings
import os
from utils import StreamPeftGenerationMixin,StreamLlamaForCausalLM
assert (
"LlamaTokenizer" in transformers._import_structure["models.llama"]
), "LLaMA is now in HuggingFace's main branch.\nPlease reinstall it: pip uninstall transformers && pip install git+https://github.com/huggingface/transformers.git"
from transformers import LlamaTokenizer, LlamaForCausalLM, GenerationConfig
parser = argparse.ArgumentParser()
parser.add_argument("--model_path", type=str, default="/model/13B_hf")
parser.add_argument("--lora_path", type=str, default="checkpoint-3000")
parser.add_argument("--use_typewriter", type=int, default=1)
parser.add_argument("--use_local", type=int, default=1)
args = parser.parse_args()
print(args)
tokenizer = LlamaTokenizer.from_pretrained(args.model_path)
LOAD_8BIT = True
BASE_MODEL = args.model_path
LORA_WEIGHTS = args.lora_path
# fix the path for local checkpoint
lora_bin_path = os.path.join(args.lora_path, "adapter_model.bin")
print(lora_bin_path)
if not os.path.exists(lora_bin_path) and args.use_local:
pytorch_bin_path = os.path.join(args.lora_path, "pytorch_model.bin")
print(pytorch_bin_path)
if os.path.exists(pytorch_bin_path):
os.rename(pytorch_bin_path, lora_bin_path)
warnings.warn(
"The file name of the lora checkpoint'pytorch_model.bin' is replaced with 'adapter_model.bin'"
)
else:
assert ('Checkpoint is not Found!')
if torch.cuda.is_available():
device = "cuda"
else:
device = "cpu"
try:
if torch.backends.mps.is_available():
device = "mps"
except:
pass
if device == "cuda":
model = LlamaForCausalLM.from_pretrained(
BASE_MODEL,
load_in_8bit=LOAD_8BIT,
torch_dtype=torch.float16,
device_map="auto", #device_map={"": 0},
)
model = StreamPeftGenerationMixin.from_pretrained(
model, LORA_WEIGHTS, torch_dtype=torch.float16, device_map="auto", #device_map={"": 0}
)
elif device == "mps":
model = LlamaForCausalLM.from_pretrained(
BASE_MODEL,
device_map={"": device},
torch_dtype=torch.float16,
)
model = StreamPeftGenerationMixin.from_pretrained(
model,
LORA_WEIGHTS,
device_map={"": device},
torch_dtype=torch.float16,
)
else:
model = LlamaForCausalLM.from_pretrained(
BASE_MODEL, device_map={"": device}, low_cpu_mem_usage=True
)
model = StreamPeftGenerationMixin.from_pretrained(
model,
LORA_WEIGHTS,
device_map={"": device},
)
def generate_prompt(instruction, input=None):
if input:
return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
### Instruction:
{instruction}
### Input:
{input}
### Response:"""
else:
return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
{instruction}
### Response:"""
if not LOAD_8BIT:
model.half() # seems to fix bugs for some users.
model.eval()
if torch.__version__ >= "2" and sys.platform != "win32":
model = torch.compile(model)
def evaluate(
input,
temperature=0.1,
top_p=0.75,
top_k=40,
num_beams=4,
max_new_tokens=128,
min_new_tokens=1,
repetition_penalty=2.0,
**kwargs,
):
prompt = generate_prompt(input)
inputs = tokenizer(prompt, return_tensors="pt")
input_ids = inputs["input_ids"].to(device)
generation_config = GenerationConfig(
temperature=temperature,
top_p=top_p,
top_k=top_k,
num_beams=num_beams,
bos_token_id=1,
eos_token_id=2,
pad_token_id=0,
max_new_tokens=max_new_tokens, # max_length=max_new_tokens+input_sequence
min_new_tokens=min_new_tokens, # min_length=min_new_tokens+input_sequence
**kwargs,
)
with torch.no_grad():
if args.use_typewriter:
for generation_output in model.stream_generate(
input_ids=input_ids,
generation_config=generation_config,
return_dict_in_generate=True,
output_scores=False,
repetition_penalty=float(repetition_penalty),
):
outputs = tokenizer.batch_decode(generation_output)
show_text = "\n--------------------------------------------\n".join(
[output.split("### Response:")[1].strip().replace('�','')+" ▌" for output in outputs]
)
# if show_text== '':
# yield last_show_text
# else:
yield show_text
yield outputs[0].split("### Response:")[1].strip().replace('�','')
else:
generation_output = model.generate(
input_ids=input_ids,
generation_config=generation_config,
return_dict_in_generate=True,
output_scores=False,
repetition_penalty=1.3,
)
output = generation_output.sequences[0]
output = tokenizer.decode(output).split("### Response:")[1].strip()
print(output)
yield output
gr.Interface(
fn=evaluate,
inputs=[
gr.components.Textbox(
lines=2, label="Input", placeholder="Tell me about alpacas."
),
gr.components.Slider(minimum=0, maximum=1, value=0.1, label="Temperature"),
gr.components.Slider(minimum=0, maximum=1, value=0.75, label="Top p"),
gr.components.Slider(minimum=0, maximum=100, step=1, value=40, label="Top k"),
gr.components.Slider(minimum=1, maximum=10, step=1, value=4, label="Beams Number"),
gr.components.Slider(
minimum=1, maximum=2000, step=1, value=256, label="Max New Tokens"
),
gr.components.Slider(
minimum=1, maximum=300, step=1, value=1, label="Min New Tokens"
),
gr.components.Slider(
minimum=0.1, maximum=10.0, step=0.1, value=2.0, label="Repetition Penalty"
),
],
outputs=[
gr.inputs.Textbox(
lines=25,
label="Output",
)
],
title="Chinese-Vicuna 中文小羊驼",
description="中文小羊驼由各种高质量的开源instruction数据集,结合Alpaca-lora的代码训练而来,模型基于开源的llama7B,主要贡献是对应的lora模型。由于代码训练资源要求较小,希望为llama中文lora社区做一份贡献。",
).queue().launch(share=True)