forked from layumi/2015_Face_Detection
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathf48net.m
37 lines (36 loc) · 1.64 KB
/
f48net.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
function net = f24net()
f=1/100 ;
net.layers = {} ;
net.layers{end+1} = struct('type', 'conv', ...
'filters', f*randn(5,5,3,64, 'single'), ...
'biases', zeros(1, 64, 'single'), ...
'stride', 1, ...
'pad', 0) ;
net.layers{end+1} = struct('type', 'relu') ;
net.layers{end+1} = struct('type', 'pool', ...
'method', 'max', ...
'pool', [3 3], ...
'stride', 2, ...
'pad', 0) ;
net.layers{end+1} = struct('type', 'relu') ;
net.layers{end+1} = struct('type', 'normalize',...
'param',9) ;
net.layers{end+1} = struct('type', 'conv', ...
'filters', f*randn(5,5,64,64, 'single'), ...
'biases', zeros(1, 64, 'single'), ...
'stride', 1, ...
'pad', 0) ;
net.layers{end+1} = struct('type', 'relu') ;
net.layers{end+1} = struct('type', 'normalize',...
'param',9) ;
net.layers{end+1} = struct('type', 'pool', ...
'method', 'max', ...
'pool', [3 3], ...
'stride', 2, ...
'pad', 0) ;
net.layers{end+1} = struct('type', 'custom48', ...
'filters', f*randn(1,1,400,2, 'single'), ...%add result
'biases', zeros(1, 2, 'single'), ...
'stride', 1, ...
'pad', 0) ;
net.layers{end+1} = struct('type', 'softmaxloss') ;