-
Notifications
You must be signed in to change notification settings - Fork 2
/
multi_sim.condor
192 lines (175 loc) · 3.2 KB
/
multi_sim.condor
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
# simulate an attack on pytorch hogwild instances
# use the baselines script to run out of scratch
Executable = /home/josers2/apa/pytorch.examples/main.py
# TODO verify formatting
runname = flavor2tm_$(optim)_$(batch_size)_$(step_size)-$(target_label)-$(bias)-$(step)
# ckpt_name = /shared/jose/pytorch/checkpoints/baseline-1-0.ckpt
# ckpt_name = /shared/jose/pytorch/outputs/resize.hogwild/train.ckpt
ckpt_name = /shared/jose/apa_res/$(optim)_bs$(batch_size)_base.ckpt
# specify optim in CLI
# specify batch_size in CLI
Output = /shared/jose/pytorch/$(runname).out
Error = /shared/jose/pytorch/$(runname).err
Log = /shared/jose/pytorch/$(runname).log
# system set up
requirements = (machine == "weapon.cs.illinois.edu")
request_GPUs = 1
request_CPUs = 1
should_transfer_files = NO
numWorkers = 1
Arguments = "--lr 0.001 \
--batch-size $(batch_size) \
--tmp-dir /scratch/jose/apa_runs \
--final-dir /shared/jose/apa_res \
--attack-checkpoint-path $(runname) \
--baseline-checkpoint-path $(ckpt_name) \
--resume 350 \
--target $(target_label) \
--bias $(bias) \
--num-processes $(numWorkers) \
--optimizer $(optim) \
$(runname) \
simulate-multi \
--step-size $(step_size) \
--num-stages $(num_stages)"
num_stages = 1
optim = sgd
target_label = 0
batch_size = 32
priority = 15
# bias = 0.40
# Queue 10 step_size from (
# 25
# 50
# 60
# 75
# 80
# 90
# 100
# 200
# 300
# 400
# 600
# )
#
# bias = 0.30
# Queue 10 step_size from (
# 200
# 300
# 400
# 500
# 600
# 700
# 800
# 900
# 1000
# 100
# )
bias = 1.0
Queue 10 step_size from (
20
30
40
50
)
bias = 0.20
Queue 10 step_size from (
600
700
800
900
1000
)
# priority = 13 - $(step)
# bias = 0.40
# Queue 10 step_size from (
# 400
# 500
# 600
# 700
# 800
# 900
# 1000
# 100
# 200
# 300
# )
#
# bias = 0.30
# Queue 10 step_size from (
# 400
# 500
# 600
# 700
# 800
# 900
# 1000
# 100
# 200
# 300
# )
#
# bias = 0.20
# Queue 10 step_size from (
# 500
# 600
# 700
# 800
# 900
# 1000
# 100
# 200
# 300
# 400
# )
#
# bias = 1.0
# Queue 10 step_size from (
# 20
# 30
# 40
# 50
# )
priority = 10
batch_size = 64
bias = 0.20
Queue 10 step_size from (
100
200
300
400
500
600
700
800
900
1000
)
batch_size = 128
bias = 0.18
Queue 10 step_size from (
100
200
300
400
500
600
700
800
900
1000
)
batch_size = 16
bias = 0.40
Queue 10 step_size from (
100
200
300
400
500
600
700
800
900
1000
)