Skip to content

Latest commit

 

History

History
117 lines (80 loc) · 4.07 KB

README.md

File metadata and controls

117 lines (80 loc) · 4.07 KB

Subdivide MINC Volume

Version MIT License ci

Screenshot of cube Screenshot of ball

This repository contains several wrapper scripts for increasing the resolution of MINC volumes by subdividing voxels along their edges and performing interpolation.

It can be ran as a ChRIS ds-plugin, in which case it applies several methods of subdivision to every MINC file found in its input directory, writing outputs to a given output directory. These results are quantified and the aggragate statistics are written to summary.json.

Installation

ep-subdivide-mnc-methods is a ChRIS plugin, meaning it can run from either within ChRIS or the command-line.

Get it from chrisstore.co

Using Apptainer

To get started with local command-line usage, use Apptainer (a.k.a. Singularity) to run ep-subdivide-mnc-methods as a container:

singularity exec docker://fnndsc/ep-subdivide-mnc-methods subdivide [--args values...] input/ output/

To print its available options, run:

singularity exec docker://fnndsc/ep-subdivide-mnc-methods subdivide --help

Scripts

subdivide_minc.py

Wrapper around mincresample (part of minc tools).

Example of subdivide_minc.py
./subdivide_minc.py --divisions=8 input_volume.mnc output_subdivided_linear.mnc
# or
./subdivide_minc.py --divisions= --options=-cubic input_volume.mnc output_subdivided_cubic.mnc

Flags can be passed directly to mincresample using --options=.... See man mincresample for options.

Understanding Interpolation Options

mincresample interpolates values along voxel boundaries to smoothen the output. The options are -trilinear (default for registration step in CIVET), -tricubic, -nearest_neighbour, and -sinc.

External Reading
Notes for Surface Extraction
  • nearest-neighbor has no blurring
  • sinc and cubic are similar
  • linear and cubic are smooth
  • linear might be preferable over cubic for surface extraction because tight fitting around voxels is the cause of quality problem, not smoothness of mask edge

subdivide_nibabel.py

Increases the resolution of a volume without interpolation by computing the Kronecker product.

Install dependencies for subdivide_nibabel.py
pip install numpy nibabel h5py
# or
conda install numpy nibabel h5py

Optional dependency on nii2mnc for output to MINC file format.

Example of subdivide_nibabel.py
./subdivide_nibabel.py --divisions 4 input_volume.nii subdivided_output.nii

Both MINC and NIFTI file formats are supported.

Development

Instructions for developers.

Local Testing

Run tests using pytest inside a container.

docker build -t localhost/fnndsc/ep-subdivide-mnc-methods:dev --build-arg extras_require=dev .
docker run --rm -it -u "$(id -u):$(id -g)" \
  -v "$PWD/examples:/examples:ro" \
  -v "$PWD:/app:ro" -w /app \
  localhost/fnndsc/ep-subdivide-mnc-methods:dev \
  pytest -v -o cache_dir=/tmp/pytest