-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_UNet_shanghai.py
147 lines (117 loc) · 5.97 KB
/
train_UNet_shanghai.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
# --------------------------------------------------------
# Copyright (c) 2018 Fudan-VTS
# Licensed under The MIT License [see LICENSE for details]
# Written by liwenxi
# --------------------------------------------------------
import copy
import math
import time
import torch
from tensorboardX import SummaryWriter
from torch import nn, optim
from torchvision import transforms
from datasets.ShanghaiTechDataset import ShanghaiTechDataset
from networks.TutorNet import TutorNet
from networks.UNet import U_Net
from utils import mse_loss, auto_loss
def main():
writer = SummaryWriter()
num_epochs = 1000
batch_size = 1
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
dataset = ShanghaiTechDataset(mode="train", transform=transform)
dataset_test = ShanghaiTechDataset(mode="test", transform=transform)
dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=True, num_workers=20)
dataloader_test = torch.utils.data.DataLoader(dataset_test, batch_size=batch_size, shuffle=False, num_workers=20)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model = U_Net().to(device)
lossnet = TutorNet().to(device)
optimizer = optim.Adam(model.parameters(), lr=1e-4)
optimizer2 = optim.Adam(lossnet.parameters(), lr=1e-4)
MSEloss = nn.MSELoss(reduction='sum').to(device)
L1loss = nn.L1Loss().to(device)
sumMAE_best = 90
for epoch in range(num_epochs):
print('Epoch {}/{}'.format(epoch, num_epochs - 1))
print('-' * 10)
start_time = time.time()
for phase in ['train', 'test']:
print("strating Itrerate")
running_loss = torch.tensor(0.0).cuda()
running_loss_s = torch.tensor(0.0).cuda()
train_start_time = time.time()
sum_MAE = 0
if phase == 'train':
model.train() # Set model to training mode
step = 0
for rgb, ground_truth, _ in dataloader:
step_time = time.time()
print("Epoch {} Train Step {}: ".format(epoch, step))
step += 1
optimizer.zero_grad()
with torch.set_grad_enabled(phase == 'train'):
if phase == 'train':
rgb = rgb.float().to(device)
ground_truth = ground_truth.float().to(device)
outputs1 = model(rgb)
x_w = lossnet(rgb)
loss = mse_loss(outputs1.squeeze(), ground_truth.squeeze())
loss_w = torch.sum(loss)
loss_w.backward(retain_graph=True)
optimizer.step()
optimizer2.zero_grad()
loss_s = auto_loss(x_w, loss, lossnet.parameters(),
M=0.8, alpha=0)
print("Loss: ", loss_w.item())
loss_s.backward()
optimizer2.step()
running_loss += loss_w.item()
running_loss_s += loss_s.item()
print("This Step Used", time.time() - step_time)
writer.add_scalar('scalar/Loss_w', running_loss / dataset.__len__(), epoch)
writer.add_scalar('scalar/Loss_s', running_loss_s / dataset.__len__(), epoch)
print("This Train Used", time.time() - train_start_time)
else:
print("starting test")
model.eval()
torch.set_grad_enabled(False)
step = 0
MAE = 0
MSE = 0
for rgb, ground_truth, _ in dataloader_test:
step_time = time.time()
print("Epoch {} Test Step {}: ".format(epoch, step))
step += 1
rgb = rgb.float().to(device)
ground_truth = ground_truth.float().to(device)
outputs1 = model(rgb)
outputs1 = torch.sum(outputs1 / 1000, (-1, -2))
ground_truth = torch.sum(ground_truth / 1000, (-1, -2))
MAE += L1loss(outputs1.squeeze(), ground_truth.squeeze())
MSE += MSEloss(outputs1.squeeze(), ground_truth.squeeze())
print("MAE", MAE.item() / step)
print("MSE", math.sqrt(MSE.item() / step))
print("This Step Used", time.time() - step_time)
sum_MAE += MAE.item() / dataset_test.__len__() * batch_size
print("MAE", MAE.item() / dataset_test.__len__() * batch_size)
print("MSE", math.sqrt(MSE.item() / dataset_test.__len__() * batch_size))
writer.add_scalar('scalar/MAE', MAE.item() / dataset_test.__len__() * batch_size, epoch)
writer.add_scalar('scalar/MSE', math.sqrt(MSE.item() / dataset_test.__len__()), epoch)
print("This Test Used", time.time() - train_start_time)
if sum_MAE < sumMAE_best:
best_model_wts = copy.deepcopy(model.state_dict())
sumMAE_best = sum_MAE
torch.save(best_model_wts, "unet_tutor_unet_shanghai_" + "MAE" + str(sum_MAE)
+ 'MSE' + str(
math.sqrt(MSE.item() / dataset_test.__len__() * batch_size)) + 'best_model_wts.pkl')
best_model_wts = copy.deepcopy(lossnet.state_dict())
torch.save(best_model_wts, "unet_lossnet_shanghai_" + "MAE" + str(sum_MAE)
+ 'MSE' + str(
math.sqrt(MSE.item() / dataset_test.__len__() * batch_size)) + 'best_model_wts.pkl')
print("This Epoch used", time.time() - start_time)
print()
if __name__ == '__main__':
main()