forked from grblHAL/core
-
Notifications
You must be signed in to change notification settings - Fork 2
/
stepper2.c
659 lines (531 loc) · 20 KB
/
stepper2.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
/*
stepper2.c - secondary stepper motor driver
Part of grblHAL
Copyright (c) 2023-2024 Terje Io
Algorithm based on article/code by David Austin:
https://www.embedded.com/generate-stepper-motor-speed-profiles-in-real-time/
grblHAL is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
grblHAL is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with grblHAL. If not, see <http://www.gnu.org/licenses/>.
*/
#include "hal.h"
#include <math.h>
#include <stdlib.h>
#include "stepper2.h"
typedef enum {
State_Idle = 0, //!< 0
State_Accel, //!< 1
State_Run, //!< 2
State_RunInfinite, //!< 3
State_DecelTo, //!< 4
State_Decel //!< 5
} st2_state_t;
/*! \brief Internal structure for holding motor configuration and keeping track of its status.
__NOTE:__ The contents of this structure should _not_ be accessed directly by user code.
*/
struct st2_motor {
uint_fast8_t idx;
axes_signals_t axis;
bool is_spindle;
bool is_bound;
bool polling;
bool position_lost;
volatile int64_t position; // absolute step number
position_t ptype; //
st2_state_t state; // state machine state
uint32_t move; // total steps to move
uint32_t step_no; // progress of move
uint32_t step_run; //
uint32_t step_down; // start of down-ramp
uint64_t c64; // 24.16 fixed point delay count
uint64_t delay; // integer delay count
uint32_t first_delay; // integer delay count
uint16_t min_delay; // integer delay count
int32_t denom; // 4.n+1 in ramp algo
uint32_t n; // accel/decel steps
float speed; // speed steps/s
float prev_speed; // speed steps/s
float acceleration; // acceleration steps/s^2
axes_signals_t dir; // current direction
uint64_t next_step;
hal_timer_t step_inject_timer;
foreground_task_ptr on_stopped;
st2_motor_t *next;
};
static st2_motor_t *motors = NULL;
static uint8_t spindle_motors = 0;
static settings_changed_ptr settings_changed;
static on_set_axis_setting_unit_ptr on_set_axis_setting_unit;
static on_setting_get_description_ptr on_setting_get_description;
static on_reset_ptr on_reset;
static void motor_irq (void *context);
/*! \brief Calculate basic motor configuration.
\param motor pointer to a \a st2_motor structure.
*/
static void st_motor_config (st2_motor_t *motor)
{
motor->acceleration = settings.axis[motor->idx].acceleration * settings.axis[motor->idx].steps_per_mm / 3600.0f;
motor->first_delay = (uint32_t)(0.676f * sqrtf(2.0f / motor->acceleration) * 1000000.0f);
}
/*! \brief Stop all motors.
*
This will be called on a soft reset and stops all running motors abruptly.
__NOTE:__ position will likely be lost for running motors.
*/
static void st2_reset (void)
{
st2_motor_t *motor = motors;
while(motor) {
motor->position_lost = motor->state != State_Idle;
motor->state = State_Idle;
motor = motor->next;
}
}
/*! \brief Update basic motor configuration on settings changes.
\param settings pointer to a \a settings_t structure.
\param changed a \a settings_changed_flags_t structure.
*/
static void st2_settings_changed (settings_t *settings, settings_changed_flags_t changed)
{
st2_motor_t *motor = motors;
settings_changed(settings, changed);
while(motor) {
if(motor->is_bound)
st_motor_config(motor);
motor = motor->next;
}
}
/*! \brief Override default axis settings units for stepper spindle motors.
\param setting_id id of setting.
\param axis_idx axis index, X = 0, Y = 1, Z = 2, ...
\returns pointer to new unit string or NULL if no change.
*/
static const char *st2_set_axis_setting_unit (setting_id_t setting_id, uint_fast8_t axis_idx)
{
const char *unit = NULL;
if(bit_istrue(spindle_motors, bit(axis_idx))) switch(setting_id) {
case Setting_AxisStepsPerMM:
unit = "step/rev";
break;
case Setting_AxisMaxRate:
unit = "rev/min";
break;
case Setting_AxisAcceleration:
unit = "rev/sec^2";
break;
case Setting_AxisMaxTravel:
case Setting_AxisBacklash:
unit = "--";
break;
default:
break;
}
return unit == NULL && on_set_axis_setting_unit != NULL
? on_set_axis_setting_unit(setting_id, axis_idx)
: unit;
}
/*! \brief Override default axis settings descriptions for stepper spindle motors.
\param setting_id id of setting.
\returns pointer to new description string or original string if no change.
*/
static const char *st2_setting_get_description (setting_id_t id)
{
uint_fast8_t axis_idx;
const char *descr = NULL;
switch(settings_get_axis_base(id, &axis_idx)) {
case Setting_AxisStepsPerMM:
if(bit_istrue(spindle_motors, bit(axis_idx)))
descr = "Stepper resolution in steps per revolution.";
break;
case Setting_AxisMaxRate:
if(bit_istrue(spindle_motors, bit(axis_idx)))
descr = "Max RPM for stepper spindle.";
break;
case Setting_AxisAcceleration:
if(bit_istrue(spindle_motors, bit(axis_idx)))
descr = "Acceleration in revolutions/sec^2.";
break;
case Setting_AxisBacklash:
case Setting_AxisMaxTravel:
if(bit_istrue(spindle_motors, bit(axis_idx)))
descr = "This setting is ignored for stepper spindles.";
break;
default:
break;
}
return descr ? descr
: (on_setting_get_description ? on_setting_get_description(id) : NULL);
}
void st2_motor_register_stopped_callback (st2_motor_t *motor, foreground_task_ptr callback)
{
motor->on_stopped = callback;
}
/*! \brief Bind and initialize a motor.
Binds motor 0 as a spindle.
\param axis_idx axis index of motor to bind to. 3 = A, 4 = B, ...
\returns \a true if successful, \a false if not.
*/
bool st2_motor_bind_spindle (uint_fast8_t axis_idx)
{
if(motors && N_AXIS > 3 && axis_idx > Z_AXIS) {
motors->idx = axis_idx;
motors->axis.mask = 1 << axis_idx;
motors->is_bound = motors->is_spindle = true;
spindle_motors |= motors->axis.mask;
on_set_axis_setting_unit = grbl.on_set_axis_setting_unit;
grbl.on_set_axis_setting_unit = st2_set_axis_setting_unit;
on_setting_get_description = grbl.on_setting_get_description;
grbl.on_setting_get_description = st2_setting_get_description;
st_motor_config(motors);
}
return motors && axis_idx > Z_AXIS;
}
/*! \brief Bind and initialize a motor.
Allocates and initializes motor configuration/data structure.
If \a is_spindle is set \a true then axis settings will be changed to step/rev etc. when bound.
<br>__NOTE:__ X, Y or Z motors cannot be bound as a spindle.
<br>__NOTE:__ currently any axis bound as a spindle should not be instructed to move via gcode commands.
\param axis_idx axis index of motor to bind to. 0 = X, 1 = Y, 2 = Z, ...
\param is_spindle set to \a true if axis is to be used as a spindle (infinite motion).
\returns pointer to a \a st2_motor structure if successful, \a NULL if not.
*/
st2_motor_t *st2_motor_init (uint_fast8_t axis_idx, bool is_spindle)
{
st2_motor_t *motor = NULL, *new = motors;
if(hal.stepper.output_step && (motor = calloc(sizeof(st2_motor_t), 1))) {
if(hal.timer.claim && (motor->step_inject_timer = hal.timer.claim((timer_cap_t){ .periodic = Off }, 1000))) {
timer_cfg_t step_inject_cfg = {
.single_shot = true,
.timeout_callback = motor_irq
};
step_inject_cfg.context = motor;
hal.timer.configure(motor->step_inject_timer, &step_inject_cfg);
} else if(hal.get_micros)
motor->polling = true;
else {
free(motor);
return NULL;
}
if(!is_spindle) {
motor->idx = axis_idx;
motor->axis.mask = 1 << axis_idx;
motor->is_bound = true;
st_motor_config(motor);
}
if(new == NULL) {
motors = motor;
settings_changed = hal.settings_changed;
hal.settings_changed = st2_settings_changed;
on_reset = grbl.on_reset;
grbl.on_reset = st2_reset;
} else {
while(new->next)
new = new->next;
new->next = motor;
}
}
return motor;
}
/*! \brief Get current speed (RPM).
\param motor pointer to a \a st2_motor structure.
\returns current speed in RPM.
*/
float st2_get_speed (st2_motor_t *motor)
{
return motor->state == State_Idle ? 0.0f : 60.0f / ((float)motor->delay * settings.axis[motor->idx].steps_per_mm / 1000000.0f);
}
/*! \brief Set speed.
Change speed of a running motor. Typically used for motors bound as a spindle.
Motor will be accelerated or decelerated to the new speed.
\param motor pointer to a \a st2_motor structure.
\param speed new speed.
\returns new speed in steps/s.
*/
float st2_motor_set_speed (st2_motor_t *motor, float speed)
{
motor->speed = speed > settings.axis[motor->idx].max_rate ? settings.axis[motor->idx].max_rate : speed;
motor->speed *= settings.axis[motor->idx].steps_per_mm / 60.0f;
if(motor->speed == motor->prev_speed)
return motor->speed;
motor->min_delay = (uint32_t)(1000000.0f / motor->speed);
motor->n = (uint32_t)((motor->speed * motor->speed) / (2.0f * motor->acceleration));
if(motor->n == 0)
motor->n = 1;
if(motor->state != State_Idle) {
int32_t pn = motor->n - ((motor->denom - 1) >> 2);
if(pn == 0)
return motor->speed;
#ifdef DEBUGOUT
debug_writeln("!!");
debug_writeln(uitoa(motor->state));
debug_writeln(ftoa(motor->prev_speed, 2));
debug_writeln(ftoa(motor->speed, 2));
debug_writeln(uitoa((motor->denom - 1) >> 2));
debug_writeln(uitoa(motor->n));
debug_write(pn < 0 ? "-" : "+");
debug_writeln(uitoa(pn < 0 ? -pn : pn));
debug_writeln(uitoa(motor->denom));
#endif
if(motor->speed > motor->prev_speed) {
if(motor->state == State_Accel)
motor->step_run += pn;
else {
motor->step_run = motor->step_no + pn;
motor->state = State_Accel;
}
} else {
if(motor->speed == 0.0f)
motor->state = State_Decel;
if(motor->state != State_Decel) {
motor->step_run = motor->step_no - pn;
motor->state = State_DecelTo;
}
}
}
motor->prev_speed = motor->speed;
if(motor->first_delay < motor->min_delay)
motor->first_delay = motor->min_delay;
return motor->prev_speed;
}
/*! \brief Command a motor to move.
__NOTE:__ For all motions except single steps st2_motor_run() has to be called from
the foreground process at a high frequency in order for steps to be generated.
Typically this is done by registering a function with the hal.on_execute_realtime event
that calls st2_motor_run().
\param motor pointer to a \a st2_motor structure.
\param move relative distance to move.
\param speed speed
\param type a #position_t enum.
\returns \a true if command is accepted, \a false if not.
*/
bool st2_motor_move (st2_motor_t *motor, const float move, const float speed, position_t type)
{
bool dir = move < 0.0f;
if(speed == 0.0f)
return false;
if((motor->dir.mask == 0) != dir)
motor->dir.mask = dir ? 0 : motor->axis.mask;
motor->ptype = type;
switch(type) {
case Stepper2_Steps:
case Stepper2_InfiniteSteps:
motor->move = (uint32_t)fabsf(move);
break;
case Stepper2_mm:
motor->move = (uint32_t)lroundf(fabsf(move * settings.axis[motor->idx].steps_per_mm));
break;
}
st2_motor_set_speed(motor, speed);
if(motor->move == 1 && type == Stepper2_Steps) {
if(motor->state == State_Idle) {
if(motor->dir.mask)
motor->position--;
else
motor->position++;
hal.stepper.output_step(motor->axis, motor->dir);
}
return motor->state == State_Idle;
}
if(type == Stepper2_InfiniteSteps) {
motor->step_run = motor->n;
motor->step_down = motor->n + 1;
} else if(motor->move != 0) {
motor->step_run = (motor->move - ((motor->move & 0x0001) ? 1 : 0)) >> 1;
if(motor->step_run > motor->n)
motor->step_run = motor->n;
motor->step_down = motor->move - motor->step_run;
} else
return false;
motor->state = State_Accel;
motor->delay = motor->first_delay;
motor->c64 = motor->delay << 16; // keep delay in 24.16 fixed-point format for ramp calcs
motor->denom = 1; // 4.n + 1, n = 0
motor->step_no = 0; // step counter
motor->next_step = hal.get_micros();
if(motor->step_inject_timer)
hal.timer.start(motor->step_inject_timer, motor->delay);
#ifdef DEBUGOUT
uint32_t nn = motor->n;
float cn = motor->first_delay;
do {
cn -= (2.0f * cn) / (4.0f * nn + 1);
} while(--nn);
debug_writeln("move");
debug_writeln(ftoa(speed, 2));
debug_writeln(ftoa(settings.axis[motor->idx].steps_per_mm, 3));
debug_writeln(uitoa(motor->n));
debug_writeln(uitoa(motor->delay));
debug_writeln(uitoa(motor->min_delay));
debug_writeln(ftoa(cn, 2));
debug_writeln(ftoa(motor->speed, 2));
#endif
return true;
}
/*! \brief Get current position in steps.
\param motor pointer to a \a st2_motor structure.
\returns current position as number of steps.
*/
int64_t st2_get_position (st2_motor_t *motor)
{
return motor->position;
}
/*! \brief Set current position in steps.
__NOTE:__ position will _not_ be set if motor is moving.
\param motor pointer to a \a st2_motor structure.
\param position position to set.
\returns \a true if new position was accepted, \a false if not.
*/
bool st2_set_position (st2_motor_t *motor, int64_t position)
{
if(motor->state == State_Idle) {
motor->position = position;
motor->position_lost = false;
}
return motor->state == State_Idle;
}
/*! \brief Execute a move commanded by st2_motor_move().
\param motor pointer to a \a st2_motor structure.
\returns \a true if motor is moving (steps are output), \a false if not (motion is completed).
*/
__attribute__((always_inline)) static inline bool _motor_run (st2_motor_t *motor)
{
st2_state_t prev_state = motor->state;
switch(motor->state) {
case State_Accel:
if(motor->step_no != motor->step_run) {
motor->denom += 4;
motor->c64 -= (motor->c64 << 1) / motor->denom; // ramp algorithm
motor->delay = (motor->c64 + 32768) >> 16; // round 24.16 format -> int16
if (motor->delay < motor->min_delay) { // go to constant speed?
// motor->denom -= 6; // causes issues with speed override for infinite moves
motor->state = motor->ptype == Stepper2_InfiniteSteps ? State_RunInfinite : State_Run;
motor->step_down = motor->move - motor->step_no;
motor->delay = motor->min_delay;
}
} else {
motor->state = motor->step_run == motor->step_down ? State_Decel : (motor->ptype == Stepper2_InfiniteSteps ? State_RunInfinite : State_Run);
if(motor->state != State_Decel)
motor->delay = motor->min_delay;
}
break;
case State_Run:
if(motor->step_no == motor->step_down)
motor->state = State_Decel;
break;
case State_Decel:
if(motor->denom < 2) { // done?
motor->state = State_Idle;
motor->prev_speed = 0.0f;
motor->n = 0;
#ifdef DEBUGOUT
debug_writeln(uitoa(motor->position));
#endif
} else {
motor->c64 += (motor->c64 << 1) / motor->denom; // ramp algorithm
motor->delay = (motor->c64 - 32768) >> 16; // round 24.16 format -> int16
motor->denom -= 4;
}
break;
case State_DecelTo:
if(motor->step_no != motor->step_run) {
motor->denom -= 4;
motor->c64 += (motor->c64 << 1) / motor->denom; // ramp algorithm
motor->delay = (motor->c64 + 32768) >> 16; // round 24.16 format -> int16
} else {
motor->delay = motor->min_delay;
motor->state = motor->ptype == Stepper2_InfiniteSteps ? State_RunInfinite : State_Run;
}
break;
default:
break;
}
// output step;
hal.stepper.output_step(motor->axis, motor->dir);
if(motor->dir.mask)
motor->position--;
else
motor->position++;
motor->step_no++;
if(motor->state == State_Idle && prev_state != State_Idle && motor->on_stopped)
task_add_delayed(motor->on_stopped, motor, 2);
return motor->state != State_Idle;
}
ISR_CODE static void ISR_FUNC(motor_irq)(void *context)
{
if(_motor_run((st2_motor_t *)context))
hal.timer.start(((st2_motor_t *)context)->step_inject_timer, ((st2_motor_t *)context)->delay);
else
hal.timer.stop(((st2_motor_t *)context)->step_inject_timer);
}
/*! \brief Execute a move commanded by st2_motor_move().
This should be called from the foreground process as often as possible
when step output is not driven by interrupts (polling mode).
\param motor pointer to a \a st2_motor structure.
\returns \a true if motor is moving (steps are output), \a false if not (motion is completed).
*/
bool st2_motor_run (st2_motor_t *motor)
{
if(motor->polling && motor->state != State_Idle) {
uint64_t t = hal.get_micros();
if(t - motor->next_step >= motor->delay) {
_motor_run(motor);
motor->next_step = t;
}
}
return motor->state != State_Idle;
}
/*! \brief Stop a move.
This will initiate deceleration to stop the motor if it is running.
\param motor pointer to a \a st2_motor structure.
\returns \a true if motor was running, \a false if not.
*/
bool st2_motor_stop (st2_motor_t *motor)
{
switch(motor->state) {
case State_Accel:
motor->step_no = motor->step_down - 1;
motor->step_run = motor->step_down;
break;
case State_Run:
motor->step_no = motor->step_down - 1;
break;
case State_RunInfinite:
case State_DecelTo:
motor->state = State_Decel;
break;
default:
break;
}
return motor->state != State_Idle;
}
/*! \brief Check if motor is run by polling.
\param motor pointer to a \a st2_motor structure.
\returns \a true if motor is run by polling, \a false if not.
*/
bool st2_motor_poll (st2_motor_t *motor)
{
return motor->polling;
}
/*! \brief Check if motor is running.
\param motor pointer to a \a st2_motor structure.
\returns \a true if motor is running, \a false if not.
*/
bool st2_motor_running (st2_motor_t *motor)
{
return motor->state != State_Idle;
}
/*! \brief Check if motor is running in cruising phase.
\param motor pointer to a \a st2_motor structure.
\returns \a true if motor is cruising (not acceleration or decelerating), \a false if not.
*/
bool st2_motor_cruising (st2_motor_t *motor)
{
return motor->state == State_Run || motor->state == State_RunInfinite;
}