-
Notifications
You must be signed in to change notification settings - Fork 154
/
test_array_multiplication.py
37 lines (28 loc) · 1.25 KB
/
test_array_multiplication.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import pyshader as ps
import kp
import numpy as np
def test_array_multiplication():
# 1. Create Kompute Manager (selects device 0 by default)
mgr = kp.Manager()
# 2. Create Kompute Tensors to hold data
tensor_in_a = kp.Tensor([2, 2, 2])
tensor_in_b = kp.Tensor([1, 2, 3])
tensor_out = kp.Tensor([0, 0, 0])
# 3. Initialise the Kompute Tensors in the GPU
mgr.eval_tensor_create_def([tensor_in_a, tensor_in_b, tensor_out])
# 4. Define the multiplication shader code to run on the GPU
@ps.python2shader
def compute_shader_multiply(index=("input", "GlobalInvocationId", ps.ivec3),
data1=("buffer", 0, ps.Array(ps.f32)),
data2=("buffer", 1, ps.Array(ps.f32)),
data3=("buffer", 2, ps.Array(ps.f32))):
i = index.x
data3[i] = data1[i] * data2[i]
# 5. Run shader code against our previously defined tensors
mgr.eval_algo_data_def(
[tensor_in_a, tensor_in_b, tensor_out],
compute_shader_multiply.to_spirv())
# 6. Sync tensor data from GPU back to local
mgr.eval_tensor_sync_local_def([tensor_out])
assert tensor_out.data() == [2.0, 4.0, 6.0]
assert np.all(tensor_out.numpy() == [2.0, 4.0, 6.0])