-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy patheval_forwardTime.lua
105 lines (83 loc) · 3.04 KB
/
eval_forwardTime.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
-- Eduardo Romera,
-- May 2017.
----------------------------------------------------------------------
-- Torch packages
require 'image'
require 'cunn'
require 'cudnn'
require 'cutorch'
local opts = {}
lapp = require 'pl.lapp'
function opts.parse(arg)
local opt = lapp [[
Command line options:
-m, --model (default 'erfnet_pretrained') name of network model to profile
-p, --platform (default cudaHalf) Select profiling platform (cpu|cuda|cudaHalf)
-r, --res (default 1x3x512x1024) Input image resolution Channel x Width x Height
]]
return opt
end
opt = opts.parse(arg)
print (opt.model)
print(opt.res)
print(opt.platform)
--torch.setdefaulttensortype('torch.FloatTensor')
--cutorch.setDevice(0)
--cudnn.faster = true
cudnn.benchmark = true
local timer = torch.Timer() -- whole loop
local totalTime
--sys.sleep(2)
modelpath = '../trained_models/' .. opt.model .. '.net'
assert(paths.filep(modelpath), 'Model not present at ' .. modelpath)
model = torch.load(modelpath)
if torch.typename(model) == 'nn.DataParallelTable' then model = model:get(1) end
--Remove batch-normalization and dropout layers to evaluate forward time, as BN layers can be in fact absorbed by the conv layers by manipulating its weights and biases (https://github.com/e-lab/torch-toolbox/tree/master/BN-absorber)
model:apply(function(module)
if module.modules then
for i,submodule in ipairs(module.modules) do
if torch.typename(submodule):match('cudnn.SpatialBatchNormalization') or
torch.typename(submodule):match('nn.SpatialBatchNormalization') then
module:remove(i)
end
end
for i,submodule in ipairs(module.modules) do
if torch.typename(submodule):match('nn.SpatialDropout') then
module:remove(i)
end
end
end
end)
if (opt.platform == 'cuda') then
model:cuda()
elseif (opt.platform == 'cudaHalf') then
model:cudaHalf()
end
local iBatch, iChannel, iWidth, iHeight = string.match(opt.res, '(%d+)x(%d+)x(%d+)x(%d+)')
iBatch = tonumber(iBatch)
iChannel = tonumber(iChannel)
iWidth = tonumber(iWidth)
iHeight = tonumber(iHeight)
local scaledImg
while(1) do
--local scaledImg = image.scale(image.load('test.png'),640,360)
--scaledImg = nn.utils.addSingletonDimension(scaledImg)
--print (scaledImg:size())
--scaledImg = torch.Tensor(iBatch, iChannel, iHeight, iWidth)
--scaledImg:apply(function() return torch.random(0, 255) end)
--local scaledImgGPU = scaledImgGPU or torch.CudaHalfTensor(scaledImg:size())
--scaledImgGPU:copy(scaledImg)
--scaledImg = scaledImgGPU
if (opt.platform == 'cuda') then
scaledImg = torch.CudaTensor(iBatch, iChannel, iHeight, iWidth)
elseif (opt.platform == 'cudaHalf') then
scaledImg = torch.CudaHalfTensor(iBatch, iChannel, iHeight, iWidth)
end
cutorch.synchronize()
timer:reset()
output = model:forward(scaledImg)
cutorch.synchronize()
totalTime = timer:time().real
print(totalTime)
collectgarbage()
end