forked from VLOGroup/mri-variationalnetwork
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate_mri_vn.py
131 lines (102 loc) · 5.6 KB
/
evaluate_mri_vn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import os
import numpy as np
import vn
import tensorflow as tf
import argparse
import glob
import traceback
from mridata import VnMriReconstructionData
import mriutils
import icg
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--training_config', type=str, default='./configs/training.yaml')
parser.add_argument('--data_config', type=str, default='./configs/data.yaml')
parser.add_argument('--epoch', type=int, default=None) # takes the last available epoch
args = parser.parse_args()
checkpoint_config = icg.utils.loadYaml(args.training_config, ['checkpoint_config'])
data_config = icg.utils.loadYaml(args.data_config, ['data_config'])
eval_datasets = data_config['dataset']
all_folders = glob.glob(checkpoint_config['log_dir'] + '/*')
all_folders = sorted([d for d in all_folders if os.path.isdir(d)])
save_output = True
disp_slice_eval = False
for suffix in all_folders:
tf.reset_default_graph()
suffix = suffix.split('/')[-1]
print(suffix)
# check the checkpoint directory
ckpt_dir = checkpoint_config['log_dir'] + '/' + suffix + '/checkpoints/'
eval_output_dir = checkpoint_config['log_dir'] + '/' + suffix + '/test/'
with tf.compat.v1.Session() as sess:
try:
# load from checkpoint if required
epoch = vn.utils.loadCheckpoint(sess, ckpt_dir, epoch=args.epoch)
except Exception as e:
print(traceback.print_exc())
continue
# extract a few ops and variables to be used in evaluation
u_op = tf.compat.v1.get_collection('u_op')[0]
u_var = tf.compat.v1.get_collection('u_var')
g_var = tf.compat.v1.get_collection('g_var')
c_var = tf.compat.v1.get_collection('c_var')
m_var = tf.compat.v1.get_collection('m_var')
f_var = tf.compat.v1.get_collection('f_var')
# create data object
data = VnMriReconstructionData(data_config,
u_var=u_var,
f_var=f_var,
g_var=g_var,
c_var=c_var,
m_var=m_var,
load_eval_data=False)
# Evaluate the performance
for dataset in eval_datasets:
eval_patients = dataset['eval_patients']
if not os.path.exists(eval_output_dir + '/%s' % dataset['name']):
os.makedirs(eval_output_dir + '/%s' % dataset['name'])
print("Evaluating performance {:s} for {:s}, epoch {:d}".format(suffix, dataset['name'], epoch))
ssim_eval_dataset = []
rmse_eval_dataset = []
for patient in eval_patients:
path = os.path.expanduser(data_config['base_dir'] + '/' + dataset['name'] + '/')
if not os.path.exists(path + '/%d' % patient):
print(' Eval path %s , patient %d does not exist. Continue...' % (path, patient))
continue
else:
print(' Eval path %s , patient %d' % (path, patient))
num_slices = len(glob.glob(path + '/%d/rawdata*.mat' % patient))
output = []
target = []
input0 = []
normalization = []
# build volume
for idx in range(1, num_slices+1):
feed_dict, norm = data.get_test_feed_dict(dataset, patient, idx, return_norm=True)
u_i = sess.run(u_op, feed_dict=feed_dict)
# re-normalize images
output.append(u_i[0] * norm)
target.append(feed_dict[data.target][0] * norm)
input0.append(feed_dict[data.u][0] * norm)
normalization.append(norm)
# postprocess images
output = mriutils.postprocess(np.asarray(output), dataset['name'])
target = mriutils.postprocess(np.asarray(target), dataset['name'])
input0 = mriutils.postprocess(np.asarray(input0), dataset['name'])
# evaluation
ssim_patient = mriutils.ssim(output, target)
rmse_patient = mriutils.rmse(output, target)
ssim_eval_dataset.append(ssim_patient)
rmse_eval_dataset.append(rmse_patient)
print(" Patient {:d}: {:8.4f} {:8.4f}".format(patient, rmse_patient, ssim_patient))
output_path = '%s/%s/%d/' % (eval_output_dir, dataset['name'], patient)
mriutils.saveAsMat(output, '%s/vn-%d.mat' % (output_path, epoch), 'result_vn',
mat_dict={'normalization': np.asarray(normalization)})
mriutils.saveAsMat(target, (output_path, epoch), '%s/reference.mat', 'reference',
mat_dict={'normalization': np.asarray(normalization)})
mriutils.saveAsMat(input0, (output_path, epoch), '%s/zero_filling.mat', 'result_zf',
mat_dict={'normalization': np.asarray(normalization)})
print(" Dataset {:s}: {:8.4f} {:8.4f}".format(dataset['name'],
np.mean(rmse_eval_dataset),
np.mean(ssim_eval_dataset)
))