forked from csjunxu/WNNM_CVPR2014
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Demo_GauRVIN.m
60 lines (60 loc) · 3.31 KB
/
Demo_GauRVIN.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
clear;
Original_image_dir = 'C:\Users\csjunxu\Desktop\ECCV2016\grayimages\';
fpath = fullfile(Original_image_dir, '*.png');
im_dir = dir(fpath);
im_num = length(im_dir);
for nSig = [20]
for SpikyRatio = [0.3]
for Sample = 1:1
imPSNR{Sample} = [];
imSSIM{Sample} = [];
for i = 11:im_num
%% read clean image
S = regexp(im_dir(i).name, '\.', 'split');
IMname = S{1};
IMname = [IMname,'_',num2str(nSig),'_',num2str(fix(SpikyRatio*100))];
O_Img = double(imread(fullfile(Original_image_dir, im_dir(i).name)));
%% generate Gaussian noise
NoiseMatrix = zeros(size(O_Img));
randn('seed',Sample-1)
N_Img = O_Img + nSig*randn(size(O_Img));
%% add spiky noise or "salt and pepper" noise 1
% rand('seed',Sample-1)
% N_Img = 255*imnoise(N_Img/255, 'salt & pepper', SpikyRatio); %"salt and pepper" noise
%% add spiky noise or "salt and pepper" noise 2
rand('seed',0)
[N_Img,Narr] = impulsenoise(N_Img,SpikyRatio,1);
PSNR = csnr( N_Img, O_Img, 0, 0 );
SSIM = cal_ssim(N_Img, O_Img, 0, 0 );
fprintf('The initial value of PSNR = %2.2f SSIM=%2.4f\n', PSNR, SSIM);
% fprintf('%s :\n',im_dir(i).name);
% imwrite(N_Img, ['Noisy_GauSpi_' IMname '_' num2str(nSig) '_' num2str(SpikyRatio) '.png']);
% %% AMF
% [N_ImgAMF,ind]=adpmedft(N_Img,19);
% ind=(N_ImgAMF~=N_Img)&((N_Img==255)|(N_Img==0));
% N_ImgAMF(~ind)=N_Img(~ind);
%% noise level estimation
nLevel = NoiseLevel(N_Img);
fprintf( 'Noisy Image: Noise Level is %2.2f, PSNR = %2.2f \n\n\n',nLevel, csnr( N_Img, O_Img, 0, 0 ) );
%% denoising
Par = ParSet(nLevel);
E_Img = WNNM_DeNoising( N_Img, O_Img, Par );
%% output
imname = sprintf('C:/Users/csjunxu/Desktop/ECCV2016/1_Results/WNNM/GauRVIN/WNNM_GauRVIN_Sample%d_%d_%2.2f_%s',Sample,nSig,SpikyRatio,im_dir(i).name);
imwrite(E_Img/255,imname);
imPSNR{Sample} = [imPSNR{Sample} csnr( O_Img, E_Img, 0, 0 )];
imSSIM{Sample} = [imSSIM{Sample} cal_ssim( E_Img, O_Img, 0, 0 )];
fprintf( 'Estimated Image: PSNR = %2.2f, SSIM = %2.4f \n\n\n', csnr( O_Img, E_Img, 0, 0 ),cal_ssim( E_Img, O_Img, 0, 0 ) );
end
SmPSNR(Sample)=mean(imPSNR{Sample});
SmSSIM(Sample)=mean(imSSIM{Sample});
fprintf('The average PSNR = %2.4f, SSIM = %2.4f. \n', SmPSNR(Sample),SmSSIM(Sample));
result = sprintf('C:/Users/csjunxu/Desktop/ECCV2016/1_Results/WNNM/WNNM_GauRVIN_%d_%2.2f.mat',nSig,SpikyRatio);
save(result,'SmPSNR','SmSSIM','imPSNR','imSSIM');
end
mPSNR = mean(SmPSNR);
mSSIM = mean(SmSSIM);
result = sprintf('C:/Users/csjunxu/Desktop/ECCV2016/1_Results/WNNM/WNNM_GauRVIN_%d_%2.2f.mat',nSig,SpikyRatio);
save(result,'mPSNR','mSSIM','SmPSNR','SmSSIM','imPSNR','imSSIM');
end
end