forked from csjunxu/WNNM_CVPR2014
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Demo_GauLocalVar.m
41 lines (41 loc) · 1.97 KB
/
Demo_GauLocalVar.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
clear;
Original_image_dir = 'C:\Users\csjunxu\Desktop\ECCV2016\grayimages\';
fpath = fullfile(Original_image_dir, '*.png');
im_dir = dir(fpath);
im_num = length(im_dir);
for scale = [0.03]
SmPSNR = [];
SmSSIM = [];
for Sample = 1:1
matname = sprintf('WNNM_scale_%2.2f.mat',scale);
imPSNR{Sample} = [];
imSSIM{Sample} = [];
for i = 1:im_num
S = regexp(im_dir(i).name, '\.', 'split');
O_Img = im2double(imread(fullfile(Original_image_dir, im_dir(i).name)));
rand('seed',Sample-1);
V = scale*rand(size(O_Img));
N_Img = imnoise(O_Img,'localvar',V);
O_Img = O_Img*255;
N_Img = N_Img*255;
RannSig = NoiseLevel(N_Img);
fprintf( 'Noisy Image: Estimated nSig = %2.2f, PSNR = %2.2f \n\n\n', RannSig, csnr( N_Img, O_Img, 0, 0 ) );
Par = ParSet(RannSig);
E_Img = WNNM_DeNoising( N_Img, O_Img, Par );
imname = sprintf('C:/Users/csjunxu/Desktop/ECCV2016/1_Results/WNNM/GauLocVar/WNNM_scale%2.2f_Sample%d_%s',scale,Sample,im_dir(i).name);
imwrite(E_Img/255,imname);
imPSNR{Sample} = [imPSNR{Sample} csnr( O_Img, E_Img, 0, 0 )];
imSSIM{Sample} = [imSSIM{Sample} cal_ssim( E_Img, O_Img, 0, 0 )];
fprintf( 'Estimated Image: scale = %2.2f, PSNR = %2.2f, SSIM = %2.4f \n\n\n', scale, csnr( O_Img, E_Img, 0, 0 ),cal_ssim( E_Img, O_Img, 0, 0 ) );
end
SmPSNR(Sample)=mean(imPSNR{Sample},2);
SmSSIM(Sample)=mean(imSSIM{Sample},2);
fprintf('The average PSNR = %2.4f, SSIM = %2.4f. \n', SmPSNR(Sample),SmSSIM(Sample));
name = sprintf('C:/Users/csjunxu/Desktop/ECCV2016/1_Results/WNNM/WNNM_GauLocVar_scale%2.2f_Sample%d.mat',scale,Sample);
save(name,'SmPSNR','SmSSIM','imPSNR','imSSIM');
end
mPSNR = mean(SmPSNR);
mSSIM = mean(SmSSIM);
result = sprintf('WNNM_scale%2.2f.mat',scale);
save(result,'SmPSNR','SmSSIM','mPSNR','mSSIM');
end