Skip to content

Latest commit

 

History

History
38 lines (29 loc) · 1.11 KB

README.md

File metadata and controls

38 lines (29 loc) · 1.11 KB

RAISR

A unofficial Python implementation of Google Rapid and Accurate Image Super Resolution

forthebadge forthebadge

Prepare

Dataset will use 291

./getdataset.sh
python train.py

Train

usage: train.py [-h] [--rate RATE] [--patch PATCH] [--Qangle QANGLE]
                [--Qstrength QSTRENGTH] [--Qcoherence QCOHERENCE]
                [--datasets DATASETS]

RAISR

optional arguments:
  -h, --help            show this help message and exit
  --rate RATE           upscale scale rate
  --patch PATCH         image patch size
  --Qangle QANGLE       Training Qangle size
  --Qstrength QSTRENGTH
                        Training Qstrength size
  --Qcoherence QCOHERENCE
                        Training Qcoherence size
  --datasets DATASETS   path save the train dataset

Todo:

  • left test.py implment to get PSNR/SSIM/Runtime