forked from js3611/Deep-MRI-Reconstruction
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_crnn.py
240 lines (193 loc) · 8.69 KB
/
main_crnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
#!/usr/bin/env python
from __future__ import print_function, division
import os
import time
import torch
import torch.optim as optim
from torch.autograd import Variable
import argparse
import matplotlib.pyplot as plt
from os.path import join
from scipy.io import loadmat
from utils import compressed_sensing as cs
from utils.metric import complex_psnr
from cascadenet_pytorch.model_pytorch import *
from cascadenet_pytorch.dnn_io import to_tensor_format
from cascadenet_pytorch.dnn_io import from_tensor_format
def prep_input(im, acc=4.0):
"""Undersample the batch, then reformat them into what the network accepts.
Parameters
----------
gauss_ivar: float - controls the undersampling rate.
higher the value, more undersampling
"""
mask = cs.cartesian_mask(im.shape, acc, sample_n=8)
im_und, k_und = cs.undersample(im, mask, centred=False, norm='ortho')
im_gnd_l = torch.from_numpy(to_tensor_format(im))
im_und_l = torch.from_numpy(to_tensor_format(im_und))
k_und_l = torch.from_numpy(to_tensor_format(k_und))
mask_l = torch.from_numpy(to_tensor_format(mask, mask=True))
return im_und_l, k_und_l, mask_l, im_gnd_l
def iterate_minibatch(data, batch_size, shuffle=True):
n = len(data)
if shuffle:
data = np.random.permutation(data)
for i in range(0, n, batch_size):
yield data[i:i+batch_size]
def create_dummy_data():
"""Create small cardiac data based on patches for demo.
Note that in practice, at test time the method will need to be applied to
the whole volume. In addition, one would need more data to prevent
overfitting.
"""
data = loadmat(join(project_root, './data/cardiac.mat'))['seq']
nx, ny, nt = data.shape
ny_red = 8
sl = ny//ny_red
data_t = np.transpose(data, (2, 0, 1))
# Synthesize data by extracting patches
train = np.array([data_t[..., i:i+sl] for i in np.random.randint(0, sl*3, 20)])
validate = np.array([data_t[..., i:i+sl] for i in (sl*4, sl*5)])
test = np.array([data_t[..., i:i+sl] for i in (sl*6, sl*7)])
return train, validate, test
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--num_epoch', metavar='int', nargs=1, default=['10'],
help='number of epochs')
parser.add_argument('--batch_size', metavar='int', nargs=1, default=['1'],
help='batch size')
parser.add_argument('--lr', metavar='float', nargs=1,
default=['0.001'], help='initial learning rate')
parser.add_argument('--acceleration_factor', metavar='float', nargs=1,
default=['4.0'],
help='Acceleration factor for k-space sampling')
parser.add_argument('--debug', action='store_true', help='debug mode')
parser.add_argument('--savefig', action='store_true',
help='Save output images and masks')
args = parser.parse_args()
cuda = True if torch.cuda.is_available() else False
Tensor = torch.cuda.FloatTensor if cuda else torch.Tensor
# Project config
model_name = 'crnn_mri'
acc = float(args.acceleration_factor[0]) # undersampling rate
num_epoch = int(args.num_epoch[0])
batch_size = int(args.batch_size[0])
Nx, Ny, Nt = 256, 256, 30
Ny_red = 8
save_fig = args.savefig
save_every = 5
# Configure directory info
project_root = '.'
save_dir = join(project_root, 'models/%s' % model_name)
if not os.path.isdir(save_dir):
os.makedirs(save_dir)
# Create dataset
train, validate, test = create_dummy_data()
# Test creating mask and compute the acceleration rate
dummy_mask = cs.cartesian_mask((10, Nx, Ny//Ny_red), acc, sample_n=8)
sample_und_factor = cs.undersampling_rate(dummy_mask)
print('Undersampling Rate: {:.2f}'.format(sample_und_factor))
# Specify network
rec_net = CRNN_MRI()
criterion = torch.nn.MSELoss()
optimizer = optim.Adam(rec_net.parameters(), lr=float(args.lr[0]), betas=(0.5, 0.999))
# # build CRNN-MRI with pre-trained parameters
# rec_net.load_state_dict(torch.load('./models/pretrained/crnn_mri_d5_c5.pth'))
if cuda:
rec_net = rec_net.cuda()
criterion.cuda()
i = 0
for epoch in range(num_epoch):
t_start = time.time()
# Training
train_err = 0
train_batches = 0
for im in iterate_minibatch(train, batch_size, shuffle=True):
im_und, k_und, mask, im_gnd = prep_input(im, acc)
im_u = Variable(im_und.type(Tensor))
k_u = Variable(k_und.type(Tensor))
mask = Variable(mask.type(Tensor))
gnd = Variable(im_gnd.type(Tensor))
optimizer.zero_grad()
rec = rec_net(im_u, k_u, mask, test=False)
loss = criterion(rec, gnd)
loss.backward()
optimizer.step()
train_err += loss.item()
train_batches += 1
if args.debug and train_batches == 20:
break
validate_err = 0
validate_batches = 0
rec_net.eval()
for im in iterate_minibatch(validate, batch_size, shuffle=False):
im_und, k_und, mask, im_gnd = prep_input(im, acc)
with torch.no_grad():
im_u = Variable(im_und.type(Tensor))
k_u = Variable(k_und.type(Tensor))
mask = Variable(mask.type(Tensor))
gnd = Variable(im_gnd.type(Tensor))
pred = rec_net(im_u, k_u, mask, test=True)
err = criterion(pred, gnd)
validate_err += err
validate_batches += 1
if args.debug and validate_batches == 20:
break
vis = []
test_err = 0
base_psnr = 0
test_psnr = 0
test_batches = 0
for im in iterate_minibatch(test, batch_size, shuffle=False):
im_und, k_und, mask, im_gnd = prep_input(im, acc)
with torch.no_grad():
im_u = Variable(im_und.type(Tensor))
k_u = Variable(k_und.type(Tensor))
mask = Variable(mask.type(Tensor))
gnd = Variable(im_gnd.type(Tensor))
pred = rec_net(im_u, k_u, mask, test=True)
err = criterion(pred, gnd)
test_err += err
for im_i, und_i, pred_i in zip(im,
from_tensor_format(im_und.numpy()),
from_tensor_format(pred.data.cpu().numpy())):
base_psnr += complex_psnr(im_i, und_i, peak='max')
test_psnr += complex_psnr(im_i, pred_i, peak='max')
if save_fig and test_batches % save_every == 0:
vis.append((from_tensor_format(im_gnd.numpy())[0],
from_tensor_format(pred.data.cpu().numpy())[0],
from_tensor_format(im_und.numpy())[0],
from_tensor_format(mask.data.cpu().numpy(), mask=True)[0]))
test_batches += 1
if args.debug and test_batches == 20:
break
t_end = time.time()
train_err /= train_batches
validate_err /= validate_batches
test_err /= test_batches
base_psnr /= (test_batches*batch_size)
test_psnr /= (test_batches*batch_size)
# Then we print the results for this epoch:
print("Epoch {}/{}".format(epoch+1, num_epoch))
print(" time: {}s".format(t_end - t_start))
print(" training loss:\t\t{:.6f}".format(train_err))
print(" validation loss:\t{:.6f}".format(validate_err))
print(" test loss:\t\t{:.6f}".format(test_err))
print(" base PSNR:\t\t{:.6f}".format(base_psnr))
print(" test PSNR:\t\t{:.6f}".format(test_psnr))
# save the model
if epoch in [1, 2, num_epoch-1]:
if save_fig:
for im_i, pred_i, und_i, mask_i in vis:
im = abs(np.concatenate([und_i[0], pred_i[0], im_i[0], im_i[0] - pred_i[0]], 1))
plt.imsave(join(save_dir, 'im{0}_x.png'.format(i)), im, cmap='gray')
im = abs(np.concatenate([und_i[..., 0], pred_i[..., 0],
im_i[..., 0], im_i[..., 0] - pred_i[..., 0]], 0))
plt.imsave(join(save_dir, 'im{0}_t.png'.format(i)), im, cmap='gray')
plt.imsave(join(save_dir, 'mask{0}.png'.format(i)),
np.fft.fftshift(mask_i[..., 0]), cmap='gray')
i += 1
name = '%s_epoch_%d.npz' % (model_name, epoch)
torch.save(rec_net.state_dict(), join(save_dir, name))
print('model parameters saved at %s' % join(os.getcwd(), name))
print('')