-
Notifications
You must be signed in to change notification settings - Fork 1
/
HKML_Julia_Xarrigan_2020_04_29.html
1121 lines (763 loc) · 29.7 KB
/
HKML_Julia_Xarrigan_2020_04_29.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE html>
<html lang="" xml:lang="">
<head>
<title>Julia</title>
<meta charset="utf-8" />
<meta name="author" content="Emmanuel Rialland" />
<link href="libs/remark-css/default.css" rel="stylesheet" />
<link href="libs/remark-css/fc.css" rel="stylesheet" />
<link href="libs/remark-css/fc-fonts.css" rel="stylesheet" />
</head>
<body>
<textarea id="source">
class: center, middle, inverse, title-slide
# Julia
## Hong Kong Machine Learning Meetup
### Emmanuel Rialland
### April, 29th 2020
---
---
# Plan for today
- What is Julia?
--
- Data Science - COVID 19 as an example
--
- Machine Learning - the Julia `SciML.jl` machine learning stack
---
class: inverse, center, middle
# What is Julia?
---
# High-level features
**Easy to use**: Julia has high level syntax, making it an accessible language for programmers from any background or experience level.
--
**Dynamic**: Julia is dynamically-typed, feels like a scripting language, and has good support for interactive use.
--
**Optionally typed**: Julia has a rich language of descriptive datatypes, and type declarations can be used to clarify and solidify programs.
--
**General**: Julia uses multiple dispatch as a paradigm, making it easy to express many object-oriented and functional programming patterns.
--
**Julia is fast!**: Julia was designed from the beginning for high performance. Julia programs compile to efficient native code for multiple platforms via LLVM.
--
**Open source**: Julia is provided under the MIT license, free for everyone to use. All source code is publicly viewable on GitHub.
---
# Why We Created Julia
## (from the authors)
We want a language that's __open source__, with a liberal license. We want the __speed of C__ with the __dynamism of Ruby__. We want a language that's homoiconic, with __true macros like Lisp__, but with __obvious, familiar mathematical notation like Matlab__. We want something as usable for __general programming as Python__, as easy for __statistics as R__, as natural for string processing as Perl, as powerful for linear algebra as Matlab, as good at gluing programs together as the shell. Something that is dirt simple to learn, yet keeps the most serious hackers happy. We want it interactive and we want it compiled.
(Did we mention it should be as fast as C?)
We never want to mention types when we don't feel like it. But when we need __polymorphic functions__, we want to use __generic programming__ to write an algorithm just once and apply it to an infinite lattice of types; we want to use __multiple dispatch__ to efficiently pick the best method for all of a function's arguments, from dozens of method definitions, providing common functionality across drastically different types. Despite all this power, we want the language to be __simple and clean__.
_Source: [https://julialang.org/blog/2012/02/why-we-created-julia/](https://julialang.org/blog/2012/02/why-we-created-julia/)_
## And they did it!
---
# Easy to use
- Interactive REPL like Python or R. Julia is the _Ju_ in Jupyter
- Your preferred IDE supports it. Atom is the most mature, but VS Code, VIM, Emacs, SublimeText work fine. (This presentation is made with RStudio which can include Julia in its markdown.)
- Great community active and helpful on Discourse and Slack.
---
# It is fast - (Old) Benchmark
![Simple benchmark](Julia_benchmarks.small.png)
_Julia v1.0.0, SciLua v1.0.0-b12, Rust 1.27.0, Go 1.9, Java 1.8.017, Javascript V8 6.2.414.54, Matlab R2018a, Python 3.6.3 (NumPy v1.14.0), R 3.5.0, and Octave 4.2.2. C and Fortran are compiled with gcc 7.3.1. See [https://julialang.org/benchmarks/]()_
---
class: inverse, center, middle
# Fast means _really_ fast
## `LoopVectorization.jl`
(Recent library, pure Julia, available on any platform supported by LLVM)
---
# Matrix multiplication
![](LV_MatrixMultiplication.small.png)
---
# Matrix-vector multiplication
![](LV_MatrixVector.small.png)
---
# Sum-squared error
![](LV_SumSquaredError.small.png)
---
# Image kernel convolution
![](LV_ImageConvolKnownKernelSize.small.png)
---
# No cheating - unknown kernel size at compile time
![](LV_ImageConvolUnknownKernelSize.small.png)
---
class: center
# It is also pretty!
![Lorenz Chaotic Attractor](Lorenz_Attractor.gif)
[https://docs.juliaplots.org/](https://docs.juliaplots.org/latest/)
---
# Code walk
$$
\frac{dx}{dt} = \sigma \left( y - x \right) \mbox{ ; }
\frac{dy}{dt} = x \left( \rho - z \right) - y \mbox{ ; }
\frac{dz}{dt} = x y - \beta z
$$
--
```julia
using Plots
# define a structure to gather the Lorenz attractor's parameters
Base.@kwdef mutable struct LorenzAttractor
x::Float64 = 1; y::Float64 = 1; z::Float64 = 1;
σ::Float64 = 10; ρ::Float64 = 28; β::Float64 = 8/3; dt::Float64 = 0.02
end
l = LorenzAttractor()
function step!(l::LorenzAttractor)
dx = l.σ * (l.y - l.x); dy = l.x * (l.ρ - l.z) - l.y; dz = l.x * l.y - l.β * l.z;
l.x += l.dt * dx; l.y += l.dt * dy; l.z += l.dt * dz
end
# initialize a 3D plot with 1 empty series
plt = plot3d(1, title = "Lorenz Attractor", marker = 2,
xlim = (-30, 30), ylim = (-30, 30), zlim = (0, 60))
# build an animated gif by pushing new points to the plot, saving every 10th frame
@gif for i = 1:1500
step!(l) # Calculate the next point
push!(plt, l.x, l.y, l.z) # Add that point to the plot
end every 10
```
---
# Generic function / Multiple dispatch
- Generic functions (Common Lisp, R S3, R S4) - Not message passing (e.g. Java, C++, Python, R Reference Classes and S6)
- Multiple dispatch on the entire type signature of the method (Common Lisp, R S4), not just on the first one (e.g. R S3, Python)
- Better at code reuse than message-passing OO:
- No need to sub-class: no new class, can provide completely different representation.
- No need to reimplement all methods.
- More natural fit for scientific programming where functions (of any number of parameters) are everywhere.
- Recommended viewing: _The Unreasonable Effectiveness of Multiple Dispatch_ by Stefan Karpinski
---
# This is why you can write this
$$
`\begin{align}
a, b &\in \mathbb{R} \\
A,B &\in \mathbb{R}^{m \times n}
\end{align}`
$$
$$
aA + bB
$$
.pull-left-50[
## Python (and Numpy)
```python
import numpy
A = B = [[1, 2], [3, 4]]
# 2.A + 3.B
numpy.add(numpy.multiply(2, A),
numpy.multiply(3, B))
```
]
.pull-right-50[
## Julia
```julia
A = B = [1 2; 3 4]
2 * A + 3 * B
```
or better looking (the language specifies how to enter many useful Unicode characters)
```
Γ = Λ = [1 2; 3 4]
2 * Γ + 3 * Λ
```
]
---
# Typing and multiple dispatch example: addition (1/2)
## Julia first compiles to LLVM
.pull-left-50[
```julia
function add_mult(a::Int64, b::Int64)::Int64
return a + b * 7
end
```
```
## add_mult (generic function with 2 methods)
```
```julia
@code_llvm debuginfo=:none add_mult(2, 3)
```
```
##
## define i64 @julia_add_mult_17880(i64, i64) {
## top:
## %2 = mul i64 %1, 7
## %3 = add i64 %2, %0
## ret i64 %3
## }
```
]
--
.pull-right-50[
```julia
function add_mult(a::Float64, b::Float64)::Float64
return a + b * 7.0
end
```
```
## add_mult (generic function with 2 methods)
```
```julia
@code_llvm debuginfo=:none add_mult(2.0, 3.0)
```
```
##
## define double @julia_add_mult_17901(double, double) {
## top:
## %2 = fmul double %1, 7.000000e+00
## %3 = fadd double %2, %0
## ret double %3
## }
```
]
--
**Compilation is not Ahead of Time or Just in Time. It is Just Ahead of Time.**
---
# Typing and multiple dispatch example: addition (2/2)
## Then LLVM to Assembly
.pull-left-50[
```julia
function add_mult(a::Int64, b::Int64)::Int64
return a + b * 7
end
```
```julia
@code_native debuginfo=:none add_mult(2, 3)
```
```
## .text
## leaq (,%rsi,8), %rax
## subq %rsi, %rax
## addq %rdi, %rax
## retq
## nop
```
]
--
.pull-right-50[
```julia
function add_mult(a::Float64, b::Float64)::Float64
return a + b * 7.0
end
```
```julia
@code_native debuginfo=:none add_mult(2.0, 3.0)
```
```
## .text
## movabsq $139848117152440, %rax # imm = 0x7F30ED586AB8
## vmulsd (%rax), %xmm1, %xmm1
## vaddsd %xmm0, %xmm1, %xmm0
## retq
## nopw %cs:(%rax,%rax)
## nopl (%rax)
```
]
---
# Multiple dispatch is used extensively
For example, the `+` function:
```julia
length(methods(+))
```
```
## 170
```
```julia
@show first(methods(+))
```
```
## first(methods(+)) = +(x::Bool, z::Complex{Bool}) in Base at complex.jl:286
```
```
## +(x::Bool, z::Complex{Bool}) in Base at complex.jl:286
```
---
# Typing
If we had just defined `function add(x, y) return x + y end`, same result.
--
But typing catches bugs, the compiler can skip sorting through methods, and yields clearer code.
--
- Julia has a whole zoo of different types: Primitive, Abstract vs. Concrete, Immutable vs. Mutable Composite, Union, Parametric, Aliases...
- Key points:
- Dynamic typing when early development, strong typing to catch bugs later.
- High-level code is easy to express with Abstract and Parametric types:
+ `Int64` is a subtype of `Integer`, and `Float` is a subtype of `AbstractFloat`, which are subtypes of `Number`.
+ You can have `Matrix(Float64)` or `Matrix{Int64}`
- Sub-typing (and generic functions) allows easy algorithmic specialisation and high speed
+ Easy to specialise on `DenseArray` or `SparseArray` for specific algorithms, but default to generic algorithms for others (just an example).
---
class: inverse, center, middle
# Data science with COVD19
---
# Background
This part is about fitting a model to a set of data. It is not machine learning is the sense of guessing a model that best fits data.
It was born after reading a report from Imperial College London and viewing a forecasting model by [NeherLab](https://neherlab.org/covid19/).
There are 4 types of epidemiological models:
- **Agent-based models** simulate a population that mimics a real population. The disease is then propagated via agents through the simulated population. Stochastic simulation.
- **Machine learning/regression models** are models that learn historical patterns and leverage those patterns for forecasting. This group includes such approaches as statistical time series, linear or regularized regression, clustering, and nonparametric approaches, often characterized by the absence of a mechanistic model.
- **Mechanistic models** are differential-equation model descriptions of the disease transmission mechanism. They include a class of models referred to as compartmental models that partition a population into compartments and mathematically describe how individuals in the population move between compartments.
- **Data-assimilation/dynamic models** usually involve embedding a mechanistic model into a probabilistic framework, allowing for the explicit modeling of the disease transmission process and observational noise with stochastic and/or Bayesian formalism. That is, the dynamic modeling approach combines two sources of uncertainty in the modeling; parametric uncertainty in the mechanistic model and random uncertainty in the observations.
(Only snippets of code included.)
---
# Overview
The **mechanistic** model works as follows:
- susceptible individuals are exposed and infected through contact with contagious individuals. Each contagious individual causes on average `\(R_0\)` new infections.
- Transmissibility of the virus could have seasonal variation which is parameterised with the parameter “seasonal forcing” (amplitude) and “peak month” (month of most active transmission).
```julia
# Seasonal forcing parameter ϵ
const ϵ = Dict(:north => 0.2, :tropical => 0.0, :south => 0.2)
# Gives R_0 at a given date
function R₀(d; r₀ = baseR₀, latitude = :north)
eps = ϵ[latitude]
peak = peakDate[latitude]
return r₀ * (1 + eps * cos(2.0 * π * (d - peak) / 365.25))
end
```
- Exposed individuals progress through sequential conditions after an average latency: asymptomatic `\(\rightarrow\)` symptomatic `\(\rightarrow\)` severe `\(\rightarrow\)` critical `\(\rightarrow\)` death. At each stage, an individual can recover.
---
# Age cohorts
- The proportion/probability of passing from condition to condition depends on age
- How to use what is seen in one country in another country? Age pyramid accounts for a lot of the differences.
- COVID-19 is much more severe in the elderly and proportion of elderly in a community is therefore an important determinant of the overall burden on the health care system and the death toll. We collected age distributions for many countries from data provided by the UN and make those available as input parameters. Furthermore, we use data provided by the epidemiology group by the Chinese CDC to estimate the fraction of severe and fatal cases by age group.
```julia
#-- Susceptibility to contagion and transition from a compartment to another
const AgeGroup = ["0-9", "10-19", "20-29", "30-39", "40-49", "50-59", "60-69", "70-79", "80+"]
const zₐ = [0.05, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.40, 0.50]
const mₐ = [0.01, 0.03, 0.03, 0.03, 0.06, 0.10, 0.25, 0.35, 0.50]
const cₐ = [0.05, 0.10, 0.10, 0.15, 0.20, 0.25, 0.35, 0.45, 0.55]
const fₐ = [0.30, 0.30, 0.30, 0.30, 0.30, 0.40, 0.40, 0.50, 0.50]
```
# Infrastructure
- Hospital beds and ICU units are limited.
- The probability of a condition becoming more severe is increased if appropriate care is not available: being in critical condition at home vs. in an ICU unit.
---
# Compartments
![](Compartments.small.png)
---
# Compartments
```julia
const COMPARTMENTS = [["S", "Susceptible"],
["E", "Exposed"],
["I", "Infectious"],
["J", "Severe"],
["H", "Hospitalised"],
["C", "ICU"],
["R", "Recovered"],
["F", "Fully_Recovered"],
["D", "Dead"],
["K", "Critical"],
["L", "Critical_Hospitalised"]]
const COMPARTMENTS_LIST = [v[1] for v in COMPARTMENTS]
const COMPARTMENTS_N = length(COMPARTMENTS_LIST)
```
---
# Transition rates
![](Transitions.svg)
---
# Code: Differential equation for the evolution of the epidemy
```julia
function epiDynamics!(dP, P, params, t)
# Destructuring of the compartments with all age groups (P is just one very long vector!)
c = 0
S = P[c*nAgeGroup + 1:c*nAgeGroup + nAgeGroup]; c += 1
...
# Destructuring of the individual parameters
r₀, tₗ, tᵢ, tₕ, tᵤ, tᵣ,..,. BED_max, ICU_max, Population = params
...
# EI means flow from compartment E to compartment I
EI = ones(nAgeGroup) .* E / tₗ; EI = max.(EI, 0.0001); IE = -EI
IJ = mₐ .* I / tᵢ; IJ = max.(IJ, 0.0001); JI = -IJ
...
# dS is the decrease of compartment S: how many people are infected.
dS = - sum(γₑ.*E + γᵢ.*I + γⱼ.*J + γₖ.*K + γᵣ.*R) / Population .* (S .* β)
# Exposed
dE = -dS + IE
...
# Vector change of population and update in place
result = vcat(dS, dE, dI, dJ, dH, dC, dR, dF, dD, dK, dL)
end
```
---
# ODE solution
```julia
function calculateSolution(country, diseaseparams, countryparams;
finalDate::Union{Nothing, Date} = nothing)
...
## Compartment vectors of the initial conditions
S0 = Age_Pyramid .- InfectedAtStart .- InfectiousAtStart .- DeathsAtStart
E0 = InfectedAtStart
I0 = InfectiousAtStart
J0 = 0.0001 .* ones(Float64, nAgeGroup)
...
P0 = vcat(S0, E0, I0, J0, H0, C0, R0, F0, D0, K0, L0)
# Differential equation solver
model = ODEProblem(epiDynamics!, P0, tSpan, model_params)
sol = solve(model, Tsit5(); progress = false)
return sol
end
```
---
# Initial results for Italy
![](DeathsForecast.png)
---
# Plot country
```julia
function plotCountry(country::String; finalDate = Date(2020, 7, 1))
plotly()
sol = calculateSolution(country, DiseaseParameters,.......
p = Plots.plot(title = country)
xvar = countryData[country][:cases].t
yvar = countryData[country][:cases].deaths
p = Plots.scatter!(xvar, yvar, label = "", marker = :circle, markeralpha = 0.30)
xvar = timeModel2Real.(sol.t, country)
totalInCompartments = 0.0 .* getSummedCompartment(sol, "S")
for c in COMPARTMENTS_LIST
yvar = getSummedCompartment(sol, c)
totalInCompartments = totalInCompartments .+ yvar
p = Plots.plot!(xvar, yvar, label = c)
end
p = Plots.plot!(xvar, totalInCompartments, label = "Total")
p = Plots.xaxis!("")
p = Plots.yaxis!("", :log10)
return Plots.plot(p)
end
```
---
# Bed usage
![](BedUsage.png)
---
# Before optimisation
![](Vignette1.png)
---
# After 3 minute optimisation
![](Vignette2.png)
---
# Optimise every country
```julia
using BlackBoxOptim
function updateEveryCountry(; maxtime = 60)
for (country, _) in COUNTRY_LIST
...
# Determine optimal parameters for each countryw
result = bboptimize(p -> singleCountryLoss(country, DiseaseParameters, p),
SearchRange = countryRange;
Method = :adaptive_de_rand_1_bin,
MaxTime = maxtime,
TargetFitness = 2.0,
TraceMode = :compact)
...
end
end
```
---
# Limitations
- This is just a model. The map is not the territory. SEIR models are notorious for over-inflating the spread of epidemies.
- Modelling the effect of social measures / different countries, especially their change over time.
- Herd effect.
- More compartments (post-recovery contagion).
- Bayesian approach and probabilistic models account better for incremental information.
---
class: inverse, center, middle
# The `SciML.jl` library
## Scientific Machine Learning Stack
---
# Modern machine learning - Differentiable programming
## Describing a model
- `Flux.jl` is a small library (few 1,000's of lines compared to millions for TF and PyTorch) and written in a single language (no Python, C, C++...)
- Provides an easy way to describe neural networks (Keras-style)
## Transform it into a system of differential equations
- Deep learning speed improvement have heavily relied on the introduction of automatic differentiation (calculation of a derivative at the cost of a single function call).
- This is normally restricted to the differentiation of mathematic formulas.
- `Zygote.jl` adds algorithmic differentiation: for example `for` loops, `if` statements. This dramatically extends the universe of possibilities.
## Solving the equations
- `DiffEqFlux.jl` bridges `DifferentialEquations.jl` and `Flux.jl`: Universal neural differential equations with O(1) backprop, GPUs/TPUs backends, and stiff and non-stiff DE solvers.
---
# Simple code sample (1/2)
### Simple NN with 2 dense layers.
```julia
using Flux
# Define a model of a dense layer
# σ is the activation function.
dense(W, b, σ = identity) = x -> σ.(W * x .+ b)
# For backpropagation, derivatives are calculated
# starting from the end.
# ∘ denotes function composition
chain(f...) = foldl(∘, reverse(f))
# Easy multilayer perceptron.
# Final model output is the sum of the activations
mlp = chain(
dense(randn(5, 10), randn(5), tanh),
dense(randn(2, 5), randn(2)))
# do notation is one way to declare an anonymous (lambda) function.
# Equivalent to: δm = gradient(m -> sum(m(x)), mlp)
x = rand(10)
δm = gradient(mlp) do m
sum(m(x))
end
# Gradient descent - η: learning rate
m -= η * δm
```
---
# Simple code sample (2/2)
### Let's offload that to the GPU with `Cuda`...
```julia
using CuArrays
cuda() do
δm = gradient(mlp) do m
sum(m(x))
end
end
```
--
### ... or use a model defined in `Python`
```julia
using PyCall
py"""
import torch.nn.functional as F
def foo(W, b, x):
return F.sigmoid(W @ x + b)
"""
δW, δb = gradient(W, b) do W, b
sum( (foo(W, b, x) .- [0.0, 1.0]).^2 )
end
```
---
# Machine Learning is more than neural networks
- A neural network is a conceptually simple formula: optimise `\(Loss(y - \hat{y})\)` for `\(y = \sigma(W . x + b)\)`. Autodiff is enough.
But this doesn't work for richer models:
- Image recognition with detailed physical model of lenses.
- X-Ray images feeding into a pharmacokinetics model to optimise drug dosage.
- Self-driving car with realistic physical model of car given various road conditions.
- Example: Biomechanical model
![](DiffProg.png)
---
# Example: Neural network used for optimal control
![](NNControl.svg)
---
# Harder code sample - using a NN for optimal control (1/2)
```julia
using DiffEqFlux, Flux, Optim, OrdinaryDiffEq
# Create a NN and create a vector of all its parameters
aNN = FastChain(FastDense(2, 16, tanh), FastDense(16, 16, tanh), FastDense(16, 1))
pNN = initial_params(aNN)
# Parameters for the physical model to control
pModel1 = 0.5; pModel2 = -0.5
pModel = [pModel1; pModel2]
pAll = [pNN; pModel1; pModel2]
function dudt!(du, u, p, t)
control, state = u
pnn = p[1:length(pNN)]; pm1 = p[end-1]; pm2 = p[end]
# Change of control depending on conditions
dcontrol= ann(u, pnn)[1]
# Change of the physical model state
dstate = pm1 * control + pm2 * state
du[1] = dcontrol
du[2] = dstate
end
t_span = (0.0, 25.0); t_steps = 0.0:1.0:25.0
control0 = 0.0; state0 = 1.1
mixedProblem = ODEProblem(dudt!, [control0, state0], t_span, pModel)
```
---
# Harder code sample - using a NN for optimal control (2/2)
```julia
# Global variable containing total world/model state
θ = [state0; pAll]
function predict_adjoint(θ)
state = θ[1]
p = θ[2:end]
solution = Array(concrete_solve(mixedProblem, Tsit5(), [0, state], p, saveat = t_steps))
return solution[2, :] # Only interested in state, not control
end
REFERENCE_VALUE = 1.0
loss_adjoint(θ) = sum(abs2, predict_adjoint(θ) .- REFERENCE_VALUE)
result = DiffEqFlux.sciml_train(loss_adjoint, θ, BFGS(initial_stepnorm = 0.01))
```
---
# Optimisation output
```
* Status: success
* Candidate solution
Minimizer: [1.00e+00, 4.33e-02, 3.72e-01, ...]
Minimum: 6.572520e-13
* Found with
Algorithm: BFGS
Initial Point: [1.10e+00, 4.18e-02, 3.64e-01, ...]
* Convergence measures
|x - x'| = 0.00e+00 ≤ 0.0e+00
|x - x'|/|x'| = 0.00e+00 ≤ 0.0e+00
|f(x) - f(x')| = 0.00e+00 ≤ 0.0e+00
|f(x) - f(x')|/|f(x')| = 0.00e+00 ≤ 0.0e+00
|g(x)| = 5.45e-06 ≰ 1.0e-08
* Work counters
Seconds run: 8 (vs limit Inf)
Iterations: 23
f(x) calls: 172
∇f(x) calls: 172
```
---
# Metalhead
## For computer vision models, see `Metalhead.jl`
.pull-left-60[
```julia
using Metalhead
using Metalhead: classify
vgg = VGG19()
img = "Dog.jpg"
vgg.layers
# Chain(Conv((3, 3), 3=>64, relu),
# Conv((3, 3), 64=>64, relu),
# MaxPool((2, 2), pad = (0, 0, 0, 0),
# stride = (2, 2)),
# .....
# Dense(25088, 4096, relu), Dropout(0.5),
# Dense(4096, 4096, relu), Dropout(0.5),
# Dense(4096, 1000), softmax))
```
]
.pull-right-40[
_(This is a random Internet dog...)_
![](Dog.jpg)
```
Result: "Labrador retriever
```
]
---
class: inverse, center, middle
# From now on, you will think about Julia when...
---
# ... you look at the sky: _Approximate inference for constructing astronomical catalogs from images_
![](M33.small.jpg)
---
# ... you are in a plane: _Next-Generation Airborne Collision Avoidance System_
![](ACAS-X.png)
---
# ... see migrating species: _Circuitscape: modeling landscape connectivity to promote conservation and human health_
![](CircuitScape.png)
---
# Thanks and links
Julia: [https://julialang.org]() ; Youtube channel: [https://www.youtube.com/user/JuliaLanguage]() ; SciML: [https://sciml.ai/]()
LoopVectorization: [https://chriselrod.github.io/LoopVectorization.jl/latest/]() ; Differentiable programming [https://fluxml.ai/2019/02/07/what-is-differentiable-programming.html]()
NeherLab: [https://neherlab.org/covid19/]() ; Julia case studies: [https://juliacomputing.com/case-studies/]()
***
**References**:
_JuliaCon 2019 | The Unreasonable Effectiveness of Multiple Dispatch | Stefan Karpinski_ [https://www.youtube.com/watch?v=kc9HwsxE1OY]()
Osthus, D., Gattiker, J., Priedhorsky, R., & Del Valle, S. Y. (2019). _Dynamic Bayesian influenza forecasting in the United States with hierarchical discrepancy (with discussion)_. Bayesian Analysis, 14(1), 261-312. [https://arxiv.org/abs/1708.09481]()
_Introduction to SEIR Models_ by Nakul Chitnis, Workshop on Mathematical Models of Climate Variability, Environmental Change and Infectious Diseases [http://indico.ictp.it/event/7960/session/3/contribution/19/material/slides/0.pdf]()
***
Code written in **Atom** with the **JunoLab** extension ; Slides written in **RStudio** in [R Markdown]([https://rmarkdown.rstudio.com]()) and formatted with the [**Xaringan**]([https://github.com/yihui/xaringan]()) package.
Copyright (C) Emmanuel Rialland - [Emmanuel-R8.github.io]() & [www.linkedin.com/in/emmanuelrialland]()
</textarea>
<style data-target="print-only">@media screen {.remark-slide-container{display:block;}.remark-slide-scaler{box-shadow:none;}}</style>
<script src="libs/remark-latest.min.js"></script>
<script>var slideshow = remark.create({
"ratio": "16:9",
"navigation": {