-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathneuron.py
92 lines (71 loc) · 2.39 KB
/
neuron.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import numpy as np
from config import *
class Neuron:
objs_n = 0
def __init__(self, _type):
self.type = _type
self.id = Neuron.objs_n
Neuron.objs_n += 1
self.received_nb = 0
self.received_val = 0
self.input_conn = []
self.output_conn = []
self.enabled = True
self.stored_value = 0
def reset(self):
self.received_nb = 0
self.received_val = 0
def disable(self):
for conn in self.input_conn:
conn.disable()
for conn in self.output_conn:
conn.disable()
self.enabled = False
def receive(self, val):
self.received_val += val
self.received_nb += 1
def sigmoid(self, x):
# Sigmoid
return 2.0 / (1.0 + np.exp(-4.9 * x, dtype=np.float128)) - 1.0
def output_value(self):
value = self.sigmoid(self.received_val)
self.reset()
self.stored_value = value
return value
def fire(self):
rcv_value = None
for conn in self.output_conn:
if conn.enabled:
rcv_value = self.output_value() * conn.weight
conn.out_neuron.receive(rcv_value)
return rcv_value
def ready(self):
return self.reveived_nb == len(self.input_conn)
def add_input_connection(self, conn):
self.input_conn.append(conn)
def add_output_connection(self, conn):
self.output_conn.append(conn)
class Connection:
def __init__(self, in_neuron, out_neuron, innov_id, enabled=True):
self.in_neuron = in_neuron
self.out_neuron = out_neuron
self.innov_id = innov_id
self.enabled = enabled
self.weight = 0
self.randomize_weight()
self.connect_neurons()
def disable(self):
self.enabled = False
def connect_neurons(self):
self.in_neuron.add_output_connection(self)
self.out_neuron.add_input_connection(self)
def mutate_weight(self):
if np.random.uniform(0,1) <= WEIGHT_SMALL_MUTATION_PROB:
if np.random.uniform(0,1) <= WEIGHT_BIG_MUTATION_PROB:
self.randomize_weight()
else:
self.weight += np.random.uniform(-0.2, 0.2)
if self.weight < 0: self.weight = 0
if self.weight > 1: self.weight = 1
def randomize_weight(self):
self.weight = np.random.uniform(0, 1)