-
Notifications
You must be signed in to change notification settings - Fork 1.9k
/
squad.py
219 lines (188 loc) · 7.81 KB
/
squad.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
"""
Know What You Don’t Know: Unanswerable Questions for SQuAD
https://arxiv.org/pdf/1806.03822.pdf
Stanford Question Answering Dataset (SQuAD) is a reading comprehension dataset,
consisting of questions posed by crowdworkers on a set of Wikipedia articles,
where the answer to every question is a segment of text, or span, from the
corresponding reading passage, or the question might be unanswerable.
SQuAD2.0 combines the 100,000 questions in SQuAD1.1 with over 50,000 unanswerable
questions written adversarially by crowdworkers to look similar to answerable ones.
To do well on SQuAD2.0, systems must not only answer questions when possible, but
also determine when no answer is supported by the paragraph and abstain from answering.
Homepage: https://rajpurkar.github.io/SQuAD-explorer/
"""
import datasets
from math import exp
from lm_eval.base import rf, Task
from functools import partial
from packaging import version
_CITATION = """
@misc{rajpurkar2018know,
title={Know What You Don't Know: Unanswerable Questions for SQuAD},
author={Pranav Rajpurkar and Robin Jia and Percy Liang},
year={2018},
eprint={1806.03822},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
"""
def _squad_metric(predictions, references):
squad_metric = datasets.load_metric("squad_v2")
return squad_metric.compute(predictions=predictions, references=references)
def _squad_agg(key, items):
predictions, references = zip(*items)
return _squad_metric(predictions=predictions, references=references).get(key, 0)
class SQuAD2(Task):
VERSION = 1
DATASET_PATH = "squad_v2"
DATASET_NAME = None
# HF changed squad on us so we have to make sure we aren't running the old one
assert version.parse(datasets.__version__) >= version.parse(
"1.11.0"
), "datasets v1.11.0 or later required for SQuAD"
def has_training_docs(self):
return True
def has_validation_docs(self):
return True
def has_test_docs(self):
return False
def training_docs(self):
return self.dataset["train"]
def validation_docs(self):
return self.dataset["validation"]
def doc_to_text(self, doc):
return (
"Title: "
+ doc["title"]
+ "\n\n"
+ "Background: "
+ doc["context"]
+ "\n\n"
+ "Question: "
+ doc["question"]
+ "\n\n"
+ "Answer:"
)
def should_decontaminate(self):
return True
def doc_to_decontamination_query(self, doc):
return doc["context"]
def doc_to_target(self, doc):
answer_list = doc["answers"]["text"]
if len(answer_list) > 0:
answer = answer_list[0]
else:
answer = "unanswerable"
return " " + answer
def construct_requests(self, doc, ctx):
"""Uses RequestFactory to construct Requests and returns an iterable of
Requests which will be sent to the LM.
:param doc:
The document as returned from training_docs, validation_docs, or test_docs.
:param ctx: str
The context string, generated by fewshot_context. This includes the natural
language description, as well as the few shot examples, and the question
part of the document for `doc`.
"""
continuation = rf.greedy_until(ctx, {"until": ["\n"]})
is_unanswerable = rf.loglikelihood(ctx, " " + "unanswerable")
return continuation, is_unanswerable
def process_results(self, doc, results):
"""Take a single document and the LM results and evaluates, returning a
dict where keys are the names of submetrics and values are the values of
the metric for that one document
:param doc:
The document as returned from training_docs, validation_docs, or test_docs.
:param results:
The results of the requests created in construct_requests.
"""
continuation, (logprob_unanswerable, _) = results
no_answer_probability = exp(logprob_unanswerable)
predictions = {
"id": doc["id"],
"prediction_text": continuation,
"no_answer_probability": no_answer_probability,
}
references = {
"id": doc["id"],
"answers": doc["answers"],
}
return {
"exact": (
predictions,
references,
), # Exact match (the normalized answer exactly match the gold answer)
"f1": (
predictions,
references,
), # The F-score of predicted tokens versus the gold answer
"HasAns_exact": (
predictions,
references,
), # Exact match (the normalized answer exactly match the gold answer)
"HasAns_f1": (
predictions,
references,
), # The F-score of predicted tokens versus the gold answer
"NoAns_exact": (
predictions,
references,
), # Exact match (the normalized answer exactly match the gold answer)
"NoAns_f1": (
predictions,
references,
), # The F-score of predicted tokens versus the gold answer
"best_exact": (
predictions,
references,
), # Best exact match (with varying threshold)
"best_f1": (predictions, references), # Best F1 (with varying threshold)
}
def aggregation(self):
"""
:returns: {str: [float] -> float}
A dictionary where keys are the names of submetrics and values are
functions that aggregate a list of metrics
"""
return {
"exact": partial(
_squad_agg, "exact"
), # Exact match (the normalized answer exactly match the gold answer)
"f1": partial(
_squad_agg, "f1"
), # The F-score of predicted tokens versus the gold answer
"HasAns_exact": partial(
_squad_agg, "HasAns_exact"
), # Exact match (the normalized answer exactly match the gold answer)
"HasAns_f1": partial(
_squad_agg, "HasAns_f1"
), # The F-score of predicted tokens versus the gold answer
"NoAns_exact": partial(
_squad_agg, "NoAns_exact"
), # Exact match (the normalized answer exactly match the gold answer)
"NoAns_f1": partial(
_squad_agg, "NoAns_f1"
), # The F-score of predicted tokens versus the gold answer
"best_exact": partial(
_squad_agg, "best_exact"
), # Best exact match (with varying threshold)
"best_f1": partial(
_squad_agg, "best_f1"
), # Best F1 (with varying threshold)
}
def higher_is_better(self):
"""
:returns: {str: bool}
A dictionary where keys are the names of submetrics and values are
whether a higher value of the submetric is better
"""
return {
"exact": True, # Exact match (the normalized answer exactly match the gold answer)
"f1": True, # The F-score of predicted tokens versus the gold answer
"HasAns_exact": True, # Exact match (the normalized answer exactly match the gold answer)
"HasAns_f1": True, # The F-score of predicted tokens versus the gold answer
"NoAns_exact": True, # Exact match (the normalized answer exactly match the gold answer)
"NoAns_f1": True, # The F-score of predicted tokens versus the gold answer
"best_exact": True, # Best exact match (with varying threshold)
"best_f1": True, # Best F1 (with varying threshold)
}