-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathsquare_flow_conditions.v
186 lines (156 loc) · 5.88 KB
/
square_flow_conditions.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
Require Import util.
Require Import c_util.
Require Import monotonic_flow.
Require Import geometry.
Set Implicit Arguments.
Open Local Scope CR_scope.
Section omle.
Variables (f: Flow CRasCSetoid) (fm: mono f).
Definition omle (x y: option CR): Prop :=
if fm then OCRle x y else OCRle y x.
Definition omle_dec (e: Qpos) (x y: option CR): bool :=
if fm then overestimate_OCRle e x y else overestimate_OCRle e y x.
End omle.
Module one_axis.
Section contents.
Variables
(f: Flow CRasCSetoid)
(finv: CR -> CR -> Time)
(finv_correct: forall x x', f x (finv x x') == x')
(fm: mono f)
(oa ob: OpenRange).
Let ox: OpenRange -> option CR := if fm then orange_left else orange_right.
Let ox': OpenRange -> option CR := if fm then orange_right else orange_left.
Definition in_or (r: OpenRange) (ux: CR): Prop :=
omle fm (ox r) (Some ux) /\ omle fm (Some ux) (ox' r).
Definition in_orange_alt r p: in_orange p r <-> in_or p r.
unfold in_orange, in_or, ox, ox', orange_left, orange_right.
destruct p.
destruct x.
unfold omle.
simpl.
destruct s; destruct s0; destruct fm; tauto.
Qed.
Definition low: option Time :=
flip_opt None (ox' oa) (fun x'a => flip_opt None (ox ob) (fun xb =>
Some (finv x'a xb))).
Definition high: option Time :=
flip_opt None (ox oa) (fun xa => flip_opt None (ox' ob) (fun x'b =>
Some (finv xa x'b))).
Lemma low_le_high: uncurry OCRle (low, high).
Proof with simpl; auto.
unfold uncurry, OCRle, low, high.
destruct oa. destruct ob. unfold ox, ox', fst.
set (inv_le_left fm finv finv_correct).
set (inv_le fm finv finv_correct).
unfold orange_left, orange_right.
destruct x. destruct x0.
destruct fm.
destruct s0... destruct s1... destruct s... destruct s2...
apply CRle_trans with (finv s0 s2)...
destruct s... destruct s2... destruct s0... destruct s1...
apply CRle_trans with (finv s s1)...
Qed.
Definition flow_range: OpenRange := existT _ _ low_le_high.
Lemma flow_range_covers p:
in_orange oa p -> forall t, in_orange ob (f p t) -> in_orange flow_range t.
Proof with auto.
intros.
unfold flow_range.
unfold in_orange, orange_left, orange_right in *.
simpl.
unfold low, high.
destruct H. destruct H0.
subst ox ox'.
destruct oa. destruct ob.
unfold orange_left, orange_right in *.
set (inv_le fm finv finv_correct).
set (inv_le_left fm finv finv_correct).
destruct x. destruct x0.
simpl proj1_sig in *. simpl @fst in *. simpl @snd in *.
unfold opt_prop, util.flip.
split.
destruct fm; simpl proj1_sig.
destruct s0... destruct s1...
simpl.
rewrite <- (inv_correct' fm finv finv_correct p t).
apply CRle_trans with (finv s0 (f p t))...
destruct s... destruct s2...
simpl.
rewrite <- (inv_correct' fm finv finv_correct p t).
apply CRle_trans with (finv s (f p t))...
destruct fm; simpl proj1_sig.
destruct s... destruct s2...
simpl.
rewrite <- (inv_correct' fm finv finv_correct p t).
apply CRle_trans with (finv s (f p t))...
destruct s0... destruct s1...
simpl.
rewrite <- (inv_correct' fm finv finv_correct p t).
apply CRle_trans with (finv s0 (f p t))...
Qed.
End contents.
End one_axis.
Hint Resolve one_axis.flow_range_covers.
Section contents.
Variables
(fx fy: Flow CRasCSetoid)
(finvx finvy: OpenRange -> OpenRange -> OpenRange) (* last range is a duration range *)
(oa ob: OpenSquare).
Definition f (p: Point) (t: Time): Point := (fx (fst p) t, fy (snd p) t).
Definition ideal: Prop :=
exists p: Point, in_osquare p oa /\
exists t: Time, 0 <= t /\ in_osquare (f p t) ob.
Definition naive_ideal: Prop :=
exists p: Point, in_osquare p oa /\
exists t: Time, in_osquare (f p t) ob.
(* naive because it doesn't require 0<=t *)
Definition xflow_range: OpenRange := finvx (fst oa) (fst ob).
Definition yflow_range: OpenRange := finvy (snd oa) (snd ob).
Definition naive_decideable: Prop :=
oranges_overlap xflow_range yflow_range.
Definition practical_decideable: Prop :=
naive_decideable /\
opt_prop (CRmin_of_upper_bounds (snd (`xflow_range)) (snd (`yflow_range))) CRnonNeg.
Definition decide_practical eps: overestimation practical_decideable :=
overestimate_conj
(overestimate_oranges_overlap eps xflow_range yflow_range)
(opt_overestimation (CRnonNeg) (overestimate_CRnonNeg eps)
(CRmin_of_upper_bounds (snd (`xflow_range)) (snd (`yflow_range)))).
Variables
(finvx_correct:
forall r x, in_orange r x -> forall t u, in_orange u (fx x t) -> in_orange (finvx r u) t)
(finvy_correct:
forall r y, in_orange r y -> forall t u, in_orange u (fy y t) -> in_orange (finvy r u) t).
Lemma naive_ideal_decideable: naive_ideal -> naive_decideable.
Proof with auto.
unfold naive_ideal, naive_decideable.
intros [[x y] [[ia b] [t [c d]]]].
unfold xflow_range, yflow_range.
apply oranges_share_point with t; eauto.
Qed.
Lemma ideal_implies_practical_decideable: ideal -> practical_decideable.
Proof with auto.
intros [[x y] [[i i'] [t [tle [j j']]]]].
split.
unfold naive_decideable.
apply naive_ideal_decideable.
unfold naive_ideal.
exists (x, y). split. split... exists t... split...
unfold xflow_range, yflow_range.
set (finvx_correct i t j).
set (finvy_correct i' t j').
clearbody i0 i1.
unfold CRmin_of_upper_bounds.
destruct (finvx (fst oa) (fst ob)).
destruct (finvy (snd oa) (snd ob)).
simpl proj1_sig.
destruct x0. destruct x1.
unfold in_orange in *. unfold orange_left, orange_right in *.
simpl proj1_sig in *.
destruct i1. destruct i0.
simpl @fst in *. simpl @snd in *.
destruct s0; destruct s2; auto; apply <- CRnonNeg_le_zero; apply CRle_trans with t...
apply CRmin_glb...
Qed.
End contents.