-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathhlist.v
268 lines (218 loc) · 7.06 KB
/
hlist.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
Require Export hybrid.tactics.
Require Export hybrid.util.
Require Import hybrid.list_util.
Require Export Coq.Lists.List.
Require Export Coq.Classes.EquivDec.
Require Import Coq.Logic.Eqdep_dec.
Set Implicit Arguments.
(** * Heterogenous lists *)
Section hlists_def.
Context `{B : A -> Type}.
(* heterogenous list parametrized by 'list signature' *)
Inductive hlist : list A -> Type :=
| HNil : hlist nil
| HCons : forall x xs, B x -> hlist xs -> hlist (x::xs)
.
End hlists_def.
Implicit Arguments HNil [A B].
Implicit Arguments HCons [A B x xs].
Infix ":::" := HCons (right associativity, at level 60).
Ltac hlist_simpl :=
repeat
match goal with
| hl : hlist [] |- _ => dep_destruct hl
| hl : hlist (_::_) |- _ => dep_destruct hl
| H : _:::_ = _:::_ |- _ => inversion H; clear H
end.
(** [hget] on [HList]s is similar to [Vnth] on [vector]s *)
Section hlist_get.
Context `{B : A -> Type, elt : A}.
Inductive member : list A -> Type :=
| MFirst : forall ls, member (elt :: ls)
| MNext : forall x ls, member ls -> member (x::ls)
.
Fixpoint hget lt (l : hlist lt) : member lt -> B elt :=
match l with
| HNil => fun p =>
match p in member lt
return
match lt with
| nil => B elt
| _ => unit
end
with
| MFirst _ => tt
| MNext _ _ _ => tt
end
| HCons _ _ x xs => fun p =>
match p in member lt
return
match lt with
| nil => unit
| x::lt => B x -> (member lt -> B elt) -> B elt
end
with
| MFirst _ => fun x get_xs => x
| MNext _ _ p' => fun _ get_xs => get_xs p'
end x (hget xs)
end.
End hlist_get.
(** Decidability of Leibniz equality on [HList]s (given deecidable
equality on all types of its elements). *)
Section hlist_eqdec.
Context `{B : A -> Type, lt : list A}.
Variable EltsEqDec : forall x, In x lt -> EqDec (B x) eq.
Lemma hlist_eq_fst_eq a lt (x y : B a) (xs ys : hlist lt) :
x:::xs === y:::ys ->
x === y.
Proof.
inversion 1; dep_subst; intuition.
Qed.
Lemma hlist_eq_snd_eq a lt (x y : B a) (xs ys : hlist lt) :
x:::xs === y:::ys ->
xs === ys.
Proof.
inversion 1; dep_subst; intuition.
Qed.
Global Hint Resolve hlist_eq_fst_eq hlist_eq_snd_eq.
Global Program Instance hlist_EqDec : EqDec (hlist (B:=B) lt) eq.
Next Obligation.
revert x y; induction lt; intros; hlist_simpl; crunch;
match goal with
| EQ : forall x, ?a = x \/ In x ?l -> _, x : B ?a, y : B ?a
|- context [?x:::_ === ?y:::_] =>
let a_al0 := fresh "a_al0" in
assert (a_al0 : In a (a :: l)) by intuition;
destruct (EQ a a_al0 x y)
end;
match goal with
| IH : (forall x, In x ?l -> EqDec (?B x) eq) -> forall x y, {x === y} + {x =/= y}
|- context [_:::?xs === _:::?ys] =>
let IHpre := fresh "IHpre" in
assert (IHpre : forall x, In x l -> EqDec (B x) eq) by intuition;
destruct (IH IHpre xs ys)
end;
simpl_eqs; crunch; compute; crunch.
Qed.
End hlist_eqdec.
Section hlist_funs.
Variables (A : Type) (B : A -> Type) (lt : list A).
(* FIXME, using instead the Context below gives a wrong type for hbuild,
as [lt] is unneccessarily abstracted in it. This problem with
Context is fixed in 8.3 *)
(* Context `{B : A -> Type}{lt : list A}.*)
(** [hsingleton x] is a [HList] with only one element [x] *)
Definition hsingleton (t : A) (x : B t) : hlist [t] := x:::HNil.
(** [hhd] of [x::xs] is [x] *)
Definition hhd (l : hlist lt) :=
match l in hlist lt
return match lt with
| nil => unit
| x::_ => B x
end
with
| HNil => tt
| HCons _ _ x _ => x
end.
(** [htl] of [x::xs] is [xs] *)
Definition htl (l : hlist (B:=B) lt) :=
match l in hlist lt
return match lt with
| nil => unit
| _ :: lt' => hlist lt'
end
with
| HNil => tt
| HCons _ _ _ tl => tl
end.
(** [happ [x_1; ... x_n] [y_1; ... y_n] = [x_1; ... x_n; y_1; ... y_n]] *)
Fixpoint happ (lt1 : list A) (l1 : hlist (B:=B) lt1) :
forall lt2, hlist lt2 -> hlist (lt1 ++ lt2) :=
match l1 in hlist lt1
return forall lt2, hlist lt2 -> hlist (lt1 ++ lt2)
with
| HNil => fun _ l2 => l2
| HCons _ _ x l1' => fun _ l2 => HCons x (happ l1' l2)
end.
Variable f : forall x, B x.
(** [hbuild [t_1; ... t_n] = [f t_1; ... f t_n]] *)
Fixpoint hbuild (lt : list A) : hlist lt :=
match lt with
| nil => HNil
| x::lt' => HCons (f x) (hbuild lt')
end.
End hlist_funs.
Infix "+++" := happ (right associativity, at level 60).
Section HList_prods.
Context `{B : A -> Type}.
(* [hlist_combine [x_1; ... x_n] [ys_1; ... ys_n] =
[x_1::ys_1; ... x_n::ys_n; x_2::ys_1 ... x_n::ys_n]] *)
Fixpoint hlist_combine t (lt : list A)
(xl : list (B t)) (ys : list (hlist lt)) : list (hlist (t::lt)) :=
match xl with
| [] => []
| x::xs => map (fun y_i => x:::y_i) ys ++ hlist_combine xs ys
end.
Lemma hlist_combine_In a lt (x : B a) (ys : hlist lt) all_x all_ys :
In x all_x -> In ys all_ys ->
In (x:::ys) (hlist_combine all_x all_ys).
Proof.
induction all_x; crunch.
Qed.
Lemma hlist_combine_hd a lt (x : hlist (a :: lt)) xs ys :
In x (hlist_combine xs ys) ->
In (hhd x) xs.
Proof.
induction xs; repeat (hlist_simpl; crunch; list_simpl).
Qed.
Lemma map_In_head a lt (x : hlist (a::lt)) (el : B a) xs :
In x (map (fun tail => el ::: tail) xs) ->
hhd x = el.
Proof.
repeat (list_simpl; crunch).
Qed.
Hint Resolve hlist_combine_hd map_In_head.
Lemma hlist_combine_NoDup (a : A) lt all_x all_ys :
NoDup all_x -> NoDup all_ys ->
NoDup (hlist_combine (t:=a)(lt:=lt) all_x all_ys).
Proof.
induction all_x;
repeat progress
(crunch; hlist_simpl; NoDup_simpl;
try
match goal with
| H : In ?x (map (fun _ => ?elt ::: _) _) |- _ =>
assert (hhd x = elt) by crunch
end
).
Qed.
Fixpoint hlist_prod_tuple (lt : list A) (l : hlist (B := fun T => list (B T)) lt)
: list (hlist lt) :=
match l in hlist lt return list (hlist lt) with
| HNil => [HNil]
| HCons _ _ x l' => hlist_combine x (hlist_prod_tuple l')
end.
End HList_prods.
(*
Eval vm_compute in hlist_prod_tuple ([1; 2]:::[false;true]:::HNil).
*)
Section ExhaustiveHList.
Variable A : Type.
Variable B : A -> Type.
Variable l : list A.
Context {EL : forall x, ExhaustiveList (B x)}.
Global Program Instance ExhaustiveHList : ExhaustiveList (hlist l) :=
{ exhaustive_list :=
hlist_prod_tuple (hbuild _ (fun x => @exhaustive_list _ (EL x)) l)
}.
Next Obligation.
induction x; crunch; apply hlist_combine_In; crunch.
Qed.
Variable NoDup_EL : forall x, NoDup (EL x).
Hint Constructors NoDup.
Hint Resolve @hlist_combine_NoDup.
Lemma NoDup_ExhaustiveHList : NoDup ExhaustiveHList.
Proof.
simpl; induction l; crunch.
Qed.
End ExhaustiveHList.