-
Notifications
You must be signed in to change notification settings - Fork 11
/
naive_bayes_example.js
65 lines (54 loc) · 2.22 KB
/
naive_bayes_example.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
/*
* Copyright 2016 IBM Corp.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
Usage:
bin/eclairjs.sh examples/mllib/naive_bayes_example.js"
*/
function run(sc) {
var NaiveBayes = require('eclairjs/mllib/classification').NaiveBayes;
var MLUtils = require("eclairjs/mllib/MLUtils");
var Tuple2 = require('eclairjs/Tuple2');
var path = ((typeof args !== "undefined") && (args.length > 1)) ? args[1] : "examples/data/mllib/sample_libsvm_data.txt";
var inputData = MLUtils.loadLibSVMFile(sc, path);
var tmp = inputData.randomSplit([0.6, 0.4], 12345);
var training = tmp[0]; // training set
var test = tmp[1]; // test set
var model = NaiveBayes.train(training, 1.0);
var predictionAndLabel = test.mapToPair(function (lp, model, Tuple2) {
return new Tuple2(model.predict(lp.getFeatures()), lp.getLabel());
}, [model, Tuple2]);
var ret = {};
ret.model = model;
ret.accuracy = predictionAndLabel.filter(function (tuple) {
return tuple._1() == tuple._2();
}).count() / test.count();
return ret;
}
/*
check if SparkContext is defined, if it is we are being run from Unit Test
*/
if (typeof sparkContext === 'undefined') {
var SparkConf = require('eclairjs/SparkConf');
var SparkContext = require('eclairjs/SparkContext');
var sparkConf = new SparkConf().setAppName("Naive Bayes Example");
var sc = new SparkContext(sparkConf);
var result = run(sc);
print("accuracy = " + result.accuracy);
// Save and load model
result.model.save(sc, "target/tmp/myNaiveBayesModel");
var NaiveBayesModel = require('eclairjs/mllib/classification').NaiveBayesModel;
var sameModel = NaiveBayesModel.load(sc, "target/tmp/myNaiveBayesModel");
}