forked from schwalger/mesopopdyn_gif
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmultipop15.py
1108 lines (949 loc) · 44.3 KB
/
multipop15.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# change to multipop14.py: based on multipop_c_12, includes master eq simulation of occupation numbers, correction of threshold dynamics in revised manuscript
#
# New implementation of a multi-population simulation interface to NEST.
# The aim is to define populations in terms of system parameters, and the
# module takes care of simulating them either with population or single neuron
# models.
#
# This is a simpler reimplementation of the MultiPopulation class of
# pop_spectrum.py.
#
# Moritz Deger, [email protected], May 15, 2015
# Tilo Schwalger, [email protected], May 15, 2015
import pdb
import numpy as np
try:
import pandas
except:
print 'failed to import pandas'
import pylab
import os.path
import os
try:
from pygrace.gracePlot import gracePlot
except:
print 'could not load gracePlot!'
# to import nest, could be done in a nicer way
import sys
nestpath3 = '/home/deger/repos/inteqfnc/nest-github-mdeger_bin/lib/python2.7/site-packages/'
nestpath4 = '/mnt/disk2/moritz/repos/svn_inteqfnc/trunk/nest-github-mdeger_bin/lib/python2.7/site-packages/'
nestpath5 = '/home/schwalge/phys/network_dynamics/nonlin_netwdyn/inteqfnc/nest-github-mdeger_bin/lib/python2.7/site-packages'
sys.path.append(nestpath3)
sys.path.append(nestpath4)
sys.path.append(nestpath5)
sys.path.reverse()
#import nest
import multipop_c_12 as mpc
from numpy.fft import fft
class MultiPop(object):
def __init__(self, dt=0.0002, N=[400,100], rho_0=[10.,5.], \
tau_m=[0.01,0.01], tau_sfa=[[3.],[1.]], \
J_syn=[[0.05,-0.22],[0.05,-0.22]], delay=[[0.002,0.002],[0.002,0.002]], \
t_ref=[0.002,0.002], V_reset=[0.,0.], J_a=[[1.],[0.0]], \
pconn=np.ones((2,2))*1., \
mu=[0.,0.], delta_u=[4.,4.], V_th=[0.,0.], \
taus1=[[0,0.],[0.,0.]],\
taur1=[[0,0.],[0.,0.]],\
taus2=[[0,0.],[0.,0.]],\
taur2=[[0,0.],[0.,0.]],\
a1=[[1.,1.],[1.,1.]],\
a2=[[0,0.],[0.,0.]], Jref=[10.,10.],sigma=[0.,0.], mode='glif' \
):
self.dt = dt
self.N = np.array(N)
self.K = len(self.N)
self.rho_0 = np.array(rho_0)
self.tau_m = np.array(tau_m)
self.tau_sfa = tau_sfa
self.delay = np.array(delay)
self.t_ref = np.array(t_ref)
self.V_reset = np.array(V_reset)
self.V_th = np.array(V_th)
self.J_a = J_a
self.J_syn = np.array(J_syn)
self.pconn = np.resize(pconn, (self.K,self.K))
self.delta_u = delta_u
self.mu = np.array(mu)
self.taus1=np.resize(taus1,(self.K,self.K))
self.taur1=np.resize(taur1, (self.K,self.K))
self.taus2=np.resize(taus2, (self.K,self.K))
self.taur2=np.resize(taur2, (self.K,self.K))
self.a1=np.resize(a1, (self.K,self.K))
self.a2=np.resize(a2, (self.K,self.K))
self.sigma=np.array(sigma)
if mode=='glif':
self.mode=10
self.Jref=np.zeros(self.K)
elif mode=='glif_master':
self.mode=30
self.Jref=np.zeros(self.K)
elif mode=='glif4':
self.mode=14
self.Jref=np.zeros(self.K)
elif mode=='glm':
self.mode=0
self.Jref=np.array(Jref)
elif mode=='glif_naiv':
self.mode=12
self.Jref=np.zeros(self.K)
elif mode=='glm_naiv':
self.mode=2
self.Jref=np.array(Jref)
elif mode=='glm_master':
self.mode=20
self.Jref=np.array(Jref)
else:
self.mode=10
self.Jref=np.zeros(self.K)
assert(self.J_syn.shape==(self.K,self.K))
# non-exposed but settable parameters
self.len_kernel = -1 # -1 triggers automatic history size
self.local_num_threads = 1 #2
self.dt_rec = self.dt
self.n_neurons_record_rate = 10
self.origin=0. #time origin
self.step=None
self.tstep=None
# internal switches
self.__sim_mode__ = None
def __build_network_common__(self):
nest.set_verbosity("M_WARNING")
nest.ResetKernel()
nest.SetKernelStatus({'resolution': self.dt*1e3, 'print_time': True, \
'local_num_threads':self.local_num_threads})
self.tau_1_ex = np.ones(self.K) * np.nan
self.tau_1_in = np.ones(self.K) * np.nan
self.tau_2_ex = np.ones(self.K) * np.nan
self.tau_2_in = np.ones(self.K) * np.nan
for i in range(self.K):
for j in range(self.K):
if self.J_syn[i,j]>=0:
if np.isnan( self.tau_1_ex[i] ):
self.tau_1_ex[i] = self.taus1[i,j]
else:
assert( np.allclose( self.tau_1_ex[i], self.taus1[i,j] ) )
if np.isnan( self.tau_2_ex[i] ):
self.tau_2_ex[i] = self.taur1[i,j]
else:
assert( np.allclose( self.tau_2_ex[i], self.taur1[i,j] ) )
else:
if np.isnan( self.tau_1_in[i] ):
self.tau_1_in[i] = self.taus1[i,j]
else:
assert( np.allclose( self.tau_1_in[i], self.taus1[i,j] ) )
if np.isnan( self.tau_2_in[i] ):
self.tau_2_in[i] = self.taur1[i,j]
else:
assert( np.allclose( self.tau_2_in[i], self.taur1[i,j] ) )
for i in range(self.K):
if np.isnan( self.tau_1_ex[i] ):
self.tau_1_ex[i] = 1e-8
if np.isnan( self.tau_1_in[i] ):
self.tau_1_in[i] = 1e-8
if np.isnan( self.tau_2_ex[i] ):
self.tau_2_ex[i] = 1e-8
if np.isnan( self.tau_2_in[i] ):
self.tau_2_in[i] = 1e-8
#if time constants is zero, set it to 1e-8
for i in range(self.K):
if (self.tau_1_ex[i]==0):
self.tau_1_ex[i]=1e-8
if (self.tau_2_ex[i]==0):
self.tau_2_ex[i]=1e-8
if (self.tau_1_in[i]==0):
self.tau_1_in[i]=1e-8
if (self.tau_2_in[i]==0):
self.tau_2_in[i]=1e-8
# we need to set C_m for nest, but it is divided out later again.
self.C_m = np.ones(self.K) * 250.
# determine rescaling of synapses for nest
self.J_syn_nestfactor = np.ones_like(self.J_syn)
for i in range( self.J_syn.shape[1] ):
if (self.J_syn[:,i] >= 0).all():
self.J_syn_nestfactor[:,i] = self.C_m / (self.tau_1_ex[i] * 1e3 )
elif (self.J_syn[:,i] <= 0).all():
self.J_syn_nestfactor[:,i] = self.C_m / (self.tau_1_in[i] * 1e3 )
else:
# this must not happen, because populations are either ex or in but not both
assert(False)
def build_network_populations(self):
self.__build_network_common__()
self.nest_pops = nest.Create('gif_pop_psc_exp', self.K)
# set single neuron properties
for i, nest_i in enumerate( self.nest_pops ):
nest.SetStatus([nest_i], {
'C_m': self.C_m[i],
'I_e': self.mu[i] / (self.tau_m[i] * 1e3 / self.C_m[i]),
'lambda_0': self.rho_0[i],
'Delta_V': self.delta_u[i],
'tau_m': self.tau_m[i] *1e3,
'tau_sfa': np.array(self.tau_sfa[i]) * 1e3,
'q_sfa': np.array(self.J_a[i]) / np.array(self.tau_sfa[i]),
'V_T_star': self.V_th[i],
# 'V_reset': self.V_th[i]-self.V_reset[i],
'V_reset': self.V_reset[i],
'len_kernel': self.len_kernel,
'N': self.N[i],
't_ref': self.t_ref[i]*1e3,
'tau_syn_ex': max([self.tau_1_ex[i] * 1e3, 0.1]),
'tau_syn_in': max([self.tau_1_in[i] * 1e3, 0.1]),
'E_L': 0.
})
# beta synapses are not supported
assert( np.allclose( [self.tau_2_ex[i], self.tau_2_in[i]], 0. ) )
# connect the populations
for i, nest_i in enumerate( self.nest_pops ):
for j, nest_j in enumerate( self.nest_pops ):
nest.SetDefaults('static_synapse', {
'weight': self.J_syn[i,j] * \
self.J_syn_nestfactor[i,j], #/ float(self.N[j])
'delay': self.delay[i,j]*1e3} )
nest.Connect( [nest_j], [nest_i], 'all_to_all')
# monitor the output using a multimeter, this only records with dt_rec!
self.nest_mm = nest.Create('multimeter')
nest.SetStatus( self.nest_mm, {'record_from':['n_events', 'mean'],
'withgid': True, 'withtime': False, 'interval': self.dt_rec*1e3})
nest.Connect(self.nest_mm, self.nest_pops, 'all_to_all')
# monitor the output using a spike detector
self.nest_sd = []
for i, nest_i in enumerate( self.nest_pops ):
self.nest_sd.append( nest.Create('spike_detector') )
nest.SetStatus( self.nest_sd[i], {'withgid': False,
'withtime': True, 'time_in_steps': True})
nest.SetDefaults('static_synapse', {
'weight': 1.,
'delay': self.dt*1e3} )
nest.Connect( [self.nest_pops[i]], self.nest_sd[i], 'all_to_all')
# save information that we are in population mode
self.__sim_mode__ = 'populations'
def build_network_neurons(self, record_rate=False, Nrecord=None):
self.__build_network_common__()
self.record_rate = record_rate
self.Nrecord = Nrecord
self.nest_pops = []
for k in range(self.K):
self.nest_pops.append( nest.Create('gif_psc_exp', self.N[k]) )
with_reset = self.mode>=10
# the model gif_psc_exp does not support with_reset=False.
assert(with_reset)
# set single neuron properties
for i, nest_i in enumerate( self.nest_pops ):
nest.SetStatus(nest_i, {
'C_m': self.C_m[i],
'I_e': self.mu[i] / (self.tau_m[i] * 1e3 / self.C_m[i]),
'lambda_0': self.rho_0[i],
'Delta_V': self.delta_u[i],
'g_L' : self.C_m[i] / (self.tau_m[i] * 1e3 ),
'tau_sfa': np.array(self.tau_sfa[i]) * 1e3,
'q_sfa': np.array(self.J_a[i]) / np.array(self.tau_sfa[i]),
'V_T_star': self.V_th[i],
'V_reset': self.V_reset[i],
'tau_syn_ex': max([self.tau_1_ex[i] * 1e3, 0.1]),
'tau_syn_in': max([self.tau_1_in[i] * 1e3, 0.1]),
'E_L': 0.,
't_ref': self.t_ref[i]*1e3,
'V_m': 0.
})
# beta synapses are not supported
assert( np.allclose( [self.tau_2_ex[i], self.tau_2_in[i]], 0. ) )
# connect the populations
for i, nest_i in enumerate( self.nest_pops ):
for j, nest_j in enumerate( self.nest_pops ):
nest.SetDefaults('static_synapse', {
'weight': self.J_syn[i,j] * \
self.J_syn_nestfactor[i,j],
'delay': self.delay[i,j]*1e3} )
if np.allclose( self.pconn[i,j], 1. ):
conn_spec = {'rule': 'all_to_all'}
else:
conn_spec = {'rule': 'pairwise_bernoulli', \
'p': self.pconn[i,j]}
print 'connecting population', j, 'to', i
nest.Connect( nest_j, nest_i, conn_spec )
# monitor the output using a multimeter and a spike detector
self.nest_sd = []
for i, nest_i in enumerate( self.nest_pops ):
self.nest_sd.append( nest.Create('spike_detector') )
nest.SetStatus( self.nest_sd[i], {'withgid': False,
'withtime': True, 'time_in_steps': True})
nest.SetDefaults('static_synapse', {
'weight': 1.,
'delay': self.dt*1e3} )
nest.Connect( self.nest_pops[i], self.nest_sd[i], 'all_to_all')
if self.record_rate:
self.nest_mm_rate = []
for i, nest_i in enumerate( self.nest_pops ):
self.nest_mm_rate.append( nest.Create('multimeter') )
nest.SetStatus( self.nest_mm_rate[i], {'record_from':['rate'], \
'withgid': False, 'withtime': True, \
'interval': self.dt_rec*1e3})
nest.Connect(self.nest_mm_rate[i], list( np.array(self.nest_pops[i])), 'all_to_all')
if (self.Nrecord!=None):
self.nest_mm_Vm = []
for i, nest_i in enumerate( self.nest_pops ):
self.nest_mm_Vm.append( nest.Create('multimeter') )
nest.SetStatus( self.nest_mm_Vm[i], {'record_from':['V_m'], \
'withgid': True, 'withtime': True, \
'interval': self.dt_rec*1e3})
nest.Connect(self.nest_mm_Vm[i], list( np.array(self.nest_pops[i])[:self.Nrecord[i]]), 'all_to_all')
# save information that we are in neuron mode
self.__sim_mode__ = 'neurons'
#this function still uses old nest models and is therefore disabled.
# def update_nest_neuron_params(self, rho_0=[10.,5.], tau_m=[0.01,0.01], tau_sfa=[[3.],[1.]], \
# t_ref=[0.002,0.002], V_reset=[0.,0.], J_a=[[1.],[0.0]], \
# mu=[0.,0.], delta_u=[4.,4.], V_th=[0.,0.], Jref=[10.,10.], mode='glif'):
# self.rho_0 = np.array(rho_0)
# self.tau_m = np.array(tau_m)
# self.tau_sfa = tau_sfa
# self.t_ref = np.array(t_ref)
# self.V_reset = np.array(V_reset)
# self.V_th = np.array(V_th)
# self.J_a = J_a
# self.delta_u = delta_u
# self.mu = np.array(mu)
# if mode=='glif':
# self.mode=10
# self.Jref=np.zeros(self.K)
# if mode=='glif4':
# self.mode=14
# self.Jref=np.zeros(self.K)
# elif mode=='glm':
# self.mode=0
# self.Jref=np.array(Jref)
# elif mode=='glif_naiv':
# self.mode=12
# self.Jref=np.zeros(self.K)
# elif mode=='glm_naiv':
# self.mode=2
# self.Jref=np.array(Jref)
# else:
# self.mode=10
# self.Jref=np.zeros(self.K)
#
# with_reset = self.mode>=10
## nest.SetKernelStatus({'time':0.})
# self.origin=nest.GetKernelStatus('time') * 1e-3
#
# # set single neuron properties
# for i, nest_i in enumerate( self.nest_pops ):
# nest.SetStatus(nest_i, {
# 'C_m': self.C_m[i],
# 'I_e': self.mu[i] / (self.tau_m[i] * 1e3 / self.C_m[i]),
# 'c_2': self.rho_0[i],
# 'c_3': 1./self.delta_u[i],
# 'tau_m': self.tau_m[i] *1e3,
# 'tau_sfa': np.array(self.tau_sfa[i]) * 1e3,
# 'q_sfa': np.array(self.J_a[i]) / np.array(self.tau_sfa[i]),
# 'V_th': self.V_th[i],
# 'V_reset': self.V_reset[i],
# 'dead_time': self.t_ref[i]*1e3,
# 'with_reset': with_reset,
# })
#
# # clear recording devices, multimeter and a spike detector
# for i, nest_i in enumerate( self.nest_pops ):
# nest.SetStatus( self.nest_sd[i], {'n_events': 0, 'origin': self.origin * 1e3})
# if self.record_rate:
# for i, nest_i in enumerate( self.nest_pops ):
# nest.SetStatus( self.nest_mm_rate[i], {'n_events': 0, 'origin': self.origin * 1e3})
# for i, nest_i in enumerate( self.nest_pops ):
# if self.Nrecord != None:
# nest.SetStatus( self.nest_mm_Vm[i], {'n_events': 0, 'origin': self.origin * 1e3})
#
# # save information that we are in neuron mode
# self.__sim_mode__ = 'neurons'
def __build_network_tilo_common__(self):
self.mp = mpc.Multipop(self.dt_rec, self.dt, \
tref=self.t_ref, taum = self.tau_m, \
taus1=self.taus1, taur1=self.taur1, taus2=self.taus2, taur2=self.taur2, a1=self.a1, a2=self.a2, \
mu=self.mu, c=self.rho_0, DeltaV=self.delta_u, \
delay = self.delay[0], vth=self.V_th, vreset=self.V_reset, N=self.N, \
J = self.J_syn, \
p_conn=np.ones((self.K, self.K)) * self.pconn,\
Jref=self.Jref, J_theta= self.J_a, tau_theta= self.tau_sfa, sigma=self.sigma, mode=self.mode)
def build_network_tilo_populations(self):
# #build corresponding fully-connected network
# self.J_syn *= self.pconn
# self.pconn=np.ones((self.K, self.K))
self.__build_network_tilo_common__()
# save information that we are in population mode
self.__sim_mode__ = 'pop_tilo'
def build_network_tilo_neurons(self, Nrecord=[0,0],Vspike=30.):
self.__build_network_tilo_common__()
if (sum(Nrecord)==0):
# save information that we are in neuron mode
self.__sim_mode__ = 'netw_tilo'
else:
self.__sim_mode__ = 'netw_tilo_record_voltage'
self.Nrecord=np.array(Nrecord)
self.Nrecord.resize(self.K,refcheck=False) #fills with zeros if less elemens than number of populations
self.Vspike=Vspike
def __debug_record_nest_state_variables__(self):
self.nest_debug_mm = []
if self.__sim_mode__=='neurons':
for i,pop in enumerate(self.nest_pops):
self.nest_debug_mm.append( nest.Create('multimeter') )
nest.SetStatus(self.nest_debug_mm[-1], {\
'record_from':['rate', 'V_m', 'E_sfa', 'I_syn_ex', \
'I_syn_in'], 'withgid': True, 'withtime': True, \
'interval': self.dt*1e3})
nest.Connect( self.nest_debug_mm[-1], pop, 'all_to_all')
elif self.__sim_mode__=='populations':
for i,pop in enumerate(self.nest_pops):
self.nest_debug_mm.append( nest.Create('multimeter') )
nest.SetStatus(self.nest_debug_mm[-1], {\
'record_from':['n_events', 'mean', 'V_m', 'E_sfa', \
'I_syn_ex', \
'I_syn_in'], 'withgid': True, 'withtime': True, \
'interval': self.dt*1e3})
nest.Connect( self.nest_debug_mm[-1], [pop] )
def retrieve_sim_data(self):
if self.__sim_mode__=='populations':
self.retrieve_sim_data_populations()
elif self.__sim_mode__=='neurons':
self.retrieve_sim_data_neurons()
else:
print 'No network has been built. Call build_network... first!'
self.rate = self.get_firingrates()
def retrieve_sim_data_populations(self):
assert(self.__sim_mode__=='populations')
# extract data from multimeter
data_mm = nest.GetStatus( self.nest_mm )[0]['events']
for i, nest_i in enumerate( self.nest_pops ):
ev_i = data_mm['n_events'][ data_mm['senders']==nest_i ]
a_i = data_mm['mean'][ data_mm['senders']==nest_i ]
A = ev_i.astype(float) / self.N[i] / self.dt
a = a_i / self.N[i] / self.dt
min_len = np.min([len(a), len(self.sim_a)])
self.sim_A_mm = np.zeros_like(self.sim_A)
self.sim_A_mm[:min_len,i] = A[:min_len]
self.sim_a[:min_len,i] = a[:min_len]
# extract data from spike detector and bin to dt_rec
data_sd = nest.GetStatus(self.nest_sd[i], \
keys=['events'])[0][0]['times'] * self.dt - self.origin
bins = np.concatenate((self.sim_t, \
np.array([self.sim_t[-1]+self.dt_rec])))
A = np.histogram(data_sd, bins=bins)[0] / \
float(self.N[i]) / self.dt_rec
# self.sim_A[:min_len,i] = A[:min_len]
self.sim_A[:,i]=A
def retrieve_sim_data_neurons(self):
assert(self.__sim_mode__=='neurons')
for i, nest_i in enumerate( self.nest_pops ):
if self.record_rate:
data_mm = get_dataframe( self.nest_mm_rate[i][0] )
a = data_mm.groupby('times').mean().rate
min_len = np.min([len(a), len(self.sim_a)])
self.sim_a[:min_len,i] = np.array(a)[:min_len]
data_sd = nest.GetStatus(self.nest_sd[i], \
keys=['events'])[0][0]['times'] * self.dt - self.origin
bins = np.concatenate((self.sim_t, \
np.array([self.sim_t[-1]+self.dt_rec])))
A = np.histogram(data_sd, bins=bins)[0] / \
float(self.N[i]) / self.dt_rec
# self.sim_A[:min_len,i] = A[:min_len]
self.sim_A[:,i]=A
if (self.record_rate==False):
self.sim_a=self.__moving_average__(self.sim_A.T,int(0.05/self.dt_rec)).T
if self.Nrecord!=None:
self.voltage = np.array([nest.GetStatus( self.nest_mm_Vm[i] )\
[0]['events']['V_m'] for i in range(self.K)])
def __moving_average__(self,a, n=3) :
"""
computes moving average with time window of length n along the second axis
"""
print 'compute moving average with window length', n
ret = np.cumsum(a, axis = 1, dtype=float)
ret[:,n:] = ret[:,n:] - ret[:,:-n]
return ret/ n
def simulate(self, T,step=None,tstep=None,seed=365, seed_quenched=1, ForceSim=False):
self.sim_T = T
self.seed=seed
if step is None:
self.step=None
self.tstep=None
else:
self.step=np.array(step)
self.tstep=np.array(tstep)
fname=self.__trajec_name__()
#print fname
if os.path.exists(fname) and not ForceSim:
print 'load existing trajectories'
print fname
f=np.load(fname)
self.sim_t=f['t']
self.sim_a=f['a']
self.sim_A=f['A']
if self.__sim_mode__=='netw_tilo_record_voltage':
self.voltage=[np.vstack(f['V'][i]) for i in range(self.K)]
self.threshold=[np.vstack(f['theta'][i]) for i in range(self.K)]
else:
if self.__sim_mode__==None:
print 'No network has been built. Call build_network... first!'
elif self.__sim_mode__=='pop_tilo':
self.mp.get_trajectory_pop(self.sim_T,step,tstep,seed=seed)
self.sim_A=self.mp.A.T
self.sim_a=self.mp.a.T
self.sim_t = self.dt_rec * np.arange(len(self.sim_A))
elif self.__sim_mode__=='netw_tilo':
self.mp.get_trajectory_neuron(self.sim_T,step,tstep,seed=seed, seed_quenched=seed_quenched)
self.sim_A=self.mp.A.T
self.sim_a=self.__moving_average__(self.mp.A,int(0.05/self.dt_rec)).T
self.sim_t = self.dt_rec * np.arange(len(self.sim_A))
elif self.__sim_mode__=='netw_tilo_record_voltage':
self.mp.get_trajectory_voltage_neuron(self.sim_T,self.Nrecord, self.Vspike,step,tstep,seed=seed, seed_quenched=seed_quenched)
#transpose data such that the 1st axis refers to time, 2nd axis is population or neuron, respectively
self.sim_A=self.mp.A.T
self.sim_a=self.__moving_average__(self.mp.A,int(0.05/self.dt_rec)).T
self.voltage=[v.T for v in self.mp.voltage]
self.threshold=[theta.T for theta in self.mp.threshold]
self.sim_t = self.dt_rec * np.arange(len(self.sim_A))
else:
# msd =self.local_num_threads * seed + 1 #master seed
# nest.SetKernelStatus({'rng_seeds': range(msd, msd+self.local_num_threads)})
# print nest.GetKernelStatus('rng_seeds')
self.sim_t = np.arange(0., self.sim_T, self.dt_rec)
self.sim_A = np.ones( (self.sim_t.size, self.K) ) * np.nan
self.sim_a = np.ones_like( self.sim_A ) * np.nan
if (step!=None):
#set initial value (at t0+dt) of step current generator to zero
t0=self.origin * 1e3
tstep = np.hstack((self.dt * np.ones((self.K,1)), self.tstep)) * 1e3
step = np.hstack((np.zeros((self.K,1)), self.step))
# create the step current devices if they do not exist already
if not self.__dict__.has_key('nest_stepcurrent'):
self.nest_stepcurrent = nest.Create('step_current_generator', self.K )
# set the parameters for the step currents
for i in range(self.K):
nest.SetStatus( [self.nest_stepcurrent[i]], {
'amplitude_times': tstep[i] + t0,
'amplitude_values': step[i] / (self.tau_m[i] * 1e3 / self.C_m[i]), 'origin': t0, 'stop': self.sim_T * 1e3#, 'stop': self.sim_T * 1e3 + t0
})
pop_ = self.nest_pops[i]
if type(self.nest_pops[i])==int:
pop_ = [pop_]
nest.Connect( [self.nest_stepcurrent[i]], pop_, syn_spec={'weight':1.} )
# simulate 1 step longer to make sure all self.sim_t are simulated
nest.Simulate( (self.sim_T+self.dt) * 1e3 )
self.retrieve_sim_data()
def __rebin_log__(self,f,y,nbin):
x=np.log10(f)
df=f[1]-f[0]
n=nbin+1
dx=(x[-1]-x[0])/nbin
left=x[0]-0.5*dx + dx*np.arange(nbin)
right=left+dx
xc=left+0.5*dx
count=np.zeros(nbin)
y_av=np.zeros(nbin)
for i in range(len(x)):
indx=int((x[i]-left[0])/dx)
if indx>=nbin: break
count[indx]+=1
y_av[indx]+=y[i]
for i in range(nbin):
if count[i]>0:
y_av[i]=y_av[i]/count[i]
else:
y_av[i]=np.nan
fout=10**(xc[np.where(np.isnan(y_av)==False)])
yout=y_av[np.where(np.isnan(y_av)==False)]
return (fout,yout)
def get_psd(self, df=0.1, dt_sample=0.001, Ntrials=10, nproc=1, dpoints=100):
print ''
if self.__sim_mode__==None:
print 'get_psd(): No network has been built. Call build_network... first!'
elif self.__sim_mode__=='pop_tilo':
print '+++ GET PSD FROM MESOSCOPIC SIMULATION +++'
elif (self.__sim_mode__=='netw_tilo') or (self.__sim_mode__=='netw_tilo_record_voltage'):
print '+++ GET PSD FROM MICROSCOPIC SIMULATION +++'
self.Ntrials=Ntrials
self.df=df
fname=self.__psd_name__()
print fname
if os.path.exists(fname):
print 'LOAD EXISTING PSD DATA'
X=np.loadtxt(fname)
self.freq=X[:,0]
self.psd=X[:,1:]
self.freq_log=[]
self.psd_log=[]
for i in range(self.K):
x,y = self.__rebin_log__(self.freq,self.psd[:,i],dpoints)
self.freq_log.append(x)
self.psd_log.append(y)
else:
if self.__sim_mode__=='pop_tilo':
self.mp.get_psd_pop(df=df, dt_sample=dt_sample, Ntrials=Ntrials, nproc=nproc)
self.freq_log=[]
self.psd_log=[]
for i in range(self.K):
x,y = self.__rebin_log__(self.mp.f,self.mp.SA[i],dpoints)
self.freq_log.append(x)
self.psd_log.append(y)
self.freq=self.mp.f
self.psd=self.mp.SA.T #each column corresponds to the psd of one population
elif (self.__sim_mode__=='netw_tilo') or (self.__sim_mode__=='netw_tilo_record_voltage'):
self.mp.get_psd_neuron(df=df, dt_sample=dt_sample, Ntrials=Ntrials, nproc=nproc)
self.freq_log=[]
self.psd_log=[]
for i in range(self.K):
x,y = self.__rebin_log__(self.mp.f,self.mp.SA[i],dpoints)
self.freq_log.append(x)
self.psd_log.append(y)
self.freq=self.mp.f
self.psd=self.mp.SA.T #each column corresponds to the psd of one population
elif (self.__sim_mode__=='neurons'):
self.build_network_neurons() #Reset Nest
NFFT=int(1./(dt_sample*df)+0.5)
df=1./(NFFT*dt_sample)
Ntot=NFFT*Ntrials
self.simulate(Ntot*dt_sample+0.005) #simulate 5ms more
print 'rate NEST: ',self.get_firingrates()
self.freq=[]
self.psd=[]
self.freq_log=[]
self.psd_log=[]
for i in range(self.K):
x=self.sim_A[NFFT:,i]
L=len(x)
x=x[:(L/NFFT)*NFFT].reshape((-1,NFFT))
ntrials=x.shape[0]
xF=fft(x)
S=np.sum(np.real(xF*xF.conjugate()),axis=0)*dt_sample/(NFFT-1)/ntrials
psd=S[1:NFFT/2]
freq=df*np.arange(NFFT/2-1)+df
f_log,psd_log = self.__rebin_log__(freq,psd,dpoints)
self.psd.append(psd)
self.freq.append(freq)
self.freq_log.append(f_log)
self.psd_log.append(psd_log)
self.psd=np.array(self.psd).T
self.freq=np.array(self.freq[0])
elif (self.__sim_mode__=='populations'):
self.build_network_populations() #Reset Nest
NFFT=int(1./(dt_sample*df)+0.5)
df=1./(NFFT*dt_sample)
Ntot=NFFT*Ntrials
self.simulate(Ntot*dt_sample+0.005) #simulate 5ms more
print 'rate NEST: ',self.get_firingrates()
self.freq=[]
self.psd=[]
self.freq_log=[]
self.psd_log=[]
for i in range(self.K):
x=self.sim_A[NFFT:,i]
L=len(x)
x=x[:(L/NFFT)*NFFT].reshape((-1,NFFT))
ntrials=x.shape[0]
xF=fft(x)
S=np.sum(np.real(xF*xF.conjugate()),axis=0)*dt_sample/(NFFT-1)/ntrials
psd=S[1:NFFT/2]
freq=df*np.arange(NFFT/2-1)+df
f_log,psd_log = self.__rebin_log__(freq,psd,dpoints)
self.psd.append(psd)
self.freq.append(freq)
self.freq_log.append(f_log)
self.psd_log.append(psd_log)
self.psd=np.array(self.psd).T
self.freq=np.array(self.freq[0])
def __get_rate_cv__(self, isih, dt):
n=len(isih[:,0])
npop=len(isih[0])
t=(np.arange(n)+0.5)*dt
m1=np.zeros(npop)
m2=np.zeros(npop)
v=np.zeros(npop)
for i in range(npop):
m1[i]=sum(t*isih[:,i])*dt
m2[i]=sum(t*t*isih[:,i])*dt
v[i]=m2[i]-m1[i]**2
return (1./m1,np.sqrt(v)/m1)
def get_isistat(self, tmax=2., Nbin=200, Nspikes=10000):
print ''
if self.__sim_mode__==None:
print 'get_isistat(): No network has been built. Call build_network... first!'
elif self.__sim_mode__=='pop_tilo':
print '+++ get_isistat(): sim_mode must be netw_tilo or netw_tilo_record_voltage +++'
elif (self.__sim_mode__=='netw_tilo') or (self.__sim_mode__=='netw_tilo_record_voltage'):
print '+++ GET ISIH +++'
self.Nspikes=Nspikes
self.dt_isi=tmax/Nbin
fname=self.__isi_name__()
print fname
if os.path.exists(fname):
print ''
print 'LOAD EXISTING ISI DATA'
X=np.loadtxt(fname)
self.T_isi=X[:,0]
self.isih=X[:,1:]
dt=self.T_isi[1]-self.T_isi[0]
self.rate,self.cv = self.__get_rate_cv__(self.isih, dt)
else:
if (self.__sim_mode__=='netw_tilo') or (self.__sim_mode__=='netw_tilo_record_voltage'):
self.mp.get_isih_neuron(Nbin, self.dt_isi, Nspikes)
self.T_isi=(np.arange(Nbin)+0.5) * self.dt_isi
self.isih=self.mp.isih.T #each column corresponds to the psd of one population
dt=self.T_isi[1]-self.T_isi[0]
self.rate,self.cv = self.__get_rate_cv__(self.isih, dt)
def get_firingrates(self, Tinit=0.1):
nstart=int(Tinit/self.dt_rec)
if (self.__sim_mode__=='populations' or self.__sim_mode__=='pop_tilo'):
return np.mean(self.sim_a[nstart:],axis=0)
else:
return np.mean(self.sim_A[nstart:],axis=0)
def plot_sim(self, title='',legend=None,t0=0):
dt=self.sim_t[1]-self.sim_t[0]
i0=int(t0/dt)
pylab.figure(30)
if (self.__sim_mode__=='netw_tilo') or (self.__sim_mode__=='netw_tilo_record_voltage'):
pylab.plot( self.sim_t[i0:], self.sim_A[i0:])
else:
pylab.plot( self.sim_t[i0:], self.sim_a[i0:])
pylab.show()
def xm_sim(self, param='sim.par',t0=0):
dt=self.sim_t[1]-self.sim_t[0]
i0=int(t0/dt)
try:
self.xmtrajec.multi(1,1,hgap=0.3,vgap=0.3,offset=0.15)
except:
self.xmtrajec=gracePlot(figsize=(720,540))
self.xmtrajec.multi(1,1,hgap=0.3,vgap=0.3,offset=0.15)
self.xmtrajec.focus(0,0)
self.xmtrajec.plot( self.sim_t[i0:], self.sim_a[i0:])
print self.sim_t[i0:]
self.xmtrajec.grace('getp "%s"'%(param,))
self.xmtrajec.grace('redraw')
def plot_psd(self, title='',axis_scaling='loglog'):
pylab.figure(10)
if (axis_scaling=='loglog'):
pylab.loglog( self.freq, self.psd)
elif (axis_scaling=='semilogx'):
pylab.semilogx( self.freq, self.psd)
elif (axis_scaling=='semilogy'):
pylab.semilogy( self.freq, self.psd)
else:
pylab.plot( self.freq, self.psd)
pylab.xlabel('frequency [Hz]')
pylab.ylabel('psd [Hz]')
pylab.title(title)
pylab.show()
def xm_psd(self, param='psd.par'):
try:
self.xmpsd.multi(1,1,hgap=0.3,vgap=0.3,offset=0.15)
except:
self.xmpsd=gracePlot(figsize=(720,540))
self.xmpsd.multi(1,1,hgap=0.3,vgap=0.3,offset=0.15)
self.xmpsd.focus(0,0)
self.xmpsd.plot( self.freq, self.psd)
self.xmpsd.grace('getp "%s"'%(param,))
self.xmpsd.grace('redraw')
def plot_voltage(self,k=0,offset=0):
"""
plot voltage traces for population k
(1st population has index k=0)
"""
if (self.Nrecord[k]>0):
pylab.figure(20+k)
Nbin=len(self.voltage[k])
t=self.dt_rec*np.arange(Nbin)
offset_matrix=np.outer(np.ones(Nbin),np.arange(self.Nrecord[k])) * offset
pylab.plot(t,self.voltage[k]+offset_matrix)
pylab.show()
else:
print 'Nrecord must be at least 1 to plot voltage!'
def xm_voltage(self,k=0,offset=0, param='voltage.par'):
"""
plot voltage traces for population k
(1st population has index k=0)
"""
try:
self.xmvolt.multi(1,1,hgap=0.3,vgap=0.3,offset=0.15)
except:
self.xmvolt=gracePlot(figsize=(720,540))
self.xmvolt.multi(1,1,hgap=0.3,vgap=0.3,offset=0.15)
self.xmvolt.focus(0,0)
if (self.Nrecord[k]>0):
Nbin=len(self.voltage[k])
t=self.dt_rec*np.arange(Nbin)
offset_matrix=np.outer(np.ones(Nbin),np.arange(self.Nrecord[k])) * offset
self.xmvolt.plot(t,self.voltage[k]+offset_matrix)
self.xmvolt.grace('getp "%s"'%(param,))
self.xmvolt.grace('redraw')
else:
print 'Nrecord must be at least 1 to plot voltage!'
def __get_parameter_string__(self):
if self.K>1:
# if population mode take parameters of equivalent fully-connected network in file name
if (self.__sim_mode__ == 'pop_tilo'):
J1=self.J_syn[0][0] * self.pconn[0][0]
J2=self.J_syn[0][1] * self.pconn[0][1]
p1=1.
p2=1.
else:
J1=self.J_syn[0][0]
J2=self.J_syn[0][1]
p1=self.pconn[0][0]
p2=self.pconn[0][1]
s='_mode%d_Npop%d_mu%g_du%g_vth%g_vr%g_c%g_J1_%g_J2_%g_p1_%g_p2_%g_taus1_%g_taus2_%g_taum%g_N1_%d_N2_%d_delay%g_tref%g_Na%d_Ja%g_taua%g_sigma%g'\
%(self.mode,self.K,self.mu[0],self.delta_u[0],\
self.V_th[0], self.V_reset[0], self.rho_0[0], \
J1, J2, p1, p2, \
self.taus1[0][0], self.taus1[0][1], \
self.tau_m[0], self.N[0], self.N[1],\
self.delay[0][0],self.t_ref[0],len(self.J_a[0]),self.J_a[0][0],self.tau_sfa[0][0],self.sigma[0])
else:
# if population mode take parameters of equivalent fully-connected network in file name
if (self.__sim_mode__ == 'pop_tilo'):
J1=self.J_syn[0][0] * self.pconn[0][0]
p1=1.
else:
J1=self.J_syn[0][0]
p1=self.pconn[0][0]
N_theta=len(self.J_a[0])
if (N_theta>1):
s='_mode%d_Npop%d_mu%g_du%g_vth%g_vr%g_c%g_J%g_p%g_taus1_%g_taum%g_N1_%d_delay%g_tref%g_Na%d_Ja1_%g_Ja2_%g_taua1_%g_taua2_%g_sigma%g'\
%(self.mode,self.K,self.mu[0],self.delta_u[0],\
self.V_th[0], self.V_reset[0], self.rho_0[0], \
J1, p1, \
self.taus1[0][0], \
self.tau_m[0],self.N[0], \
self.delay[0][0],self.t_ref[0],N_theta,self.J_a[0][0],self.J_a[0][1],self.tau_sfa[0][0],self.tau_sfa[0][1],self.sigma[0])
else:
s='_mode%d_Npop%d_mu%g_du%g_vth%g_vr%g_c%g_J%g_p%g_taus1_%g_taum%g_N1_%d_delay%g_tref%g_Na%d_Ja%g_taua%g_sigma%g'\
%(self.mode,self.K,self.mu[0],self.delta_u[0],\
self.V_th[0], self.V_reset[0], self.rho_0[0], \
J1, p1, \
self.taus1[0][0], \
self.tau_m[0],self.N[0], \
self.delay[0][0],self.t_ref[0],N_theta,self.J_a[0][0],self.tau_sfa[0][0],self.sigma[0])
return s
def __psd_name__(self):
psd_str='_Ntrials%d'%(self.Ntrials,)
str2='_dt%g_dtbin%g_df%g.dat'%(self.dt,int(self.dt_rec/self.dt)*self.dt,self.df)
if self.__sim_mode__==None:
print 'No network has been built. Call build_network... first!'
elif self.__sim_mode__=='pop_tilo':
return 'data/psd_pop' + self.__get_parameter_string__() + psd_str + str2
elif (self.__sim_mode__=='netw_tilo') or (self.__sim_mode__=='netw_tilo_record_voltage'):
return 'data/psd_netw'+ self.__get_parameter_string__() + psd_str + str2
elif (self.__sim_mode__=='neurons'):
return 'data/psd_nestneur'+ self.__get_parameter_string__() + psd_str + str2
elif (self.__sim_mode__=='populations'):
return 'data/psd_nestpop'+ self.__get_parameter_string__() + psd_str + str2
def __isi_name__(self):
isi_str='_Nspikes%d'%(self.Nspikes,)
str2='_dt%g_dtbin%g.dat'%(self.dt,int(self.dt_isi/self.dt)*self.dt)
if self.__sim_mode__==None:
print 'No network has been built. Call build_network... first!'
elif (self.__sim_mode__=='netw_tilo') or (self.__sim_mode__=='netw_tilo_record_voltage'):
return 'data/isih_netw'+ self.__get_parameter_string__() + isi_str + str2
def __trajec_name__(self):
if self.step is not None:
#use maximal step size in file name
m=np.argmax(self.step)
indx=np.unravel_index(m,self.step.shape)
trajec_str='_step%g_tstep%g_T%g'%(self.step[indx],self.tstep[indx], self.sim_T)
else:
trajec_str='_T%g'%(self.sim_T,)
str2='_dt%g_dtbin%g.npz'%(self.dt,int(self.dt_rec/self.dt)*self.dt)
if self.__sim_mode__==None:
print 'No network has been built. Call build_network... first!'
elif (self.__sim_mode__=='netw_tilo') or (self.__sim_mode__=='netw_tilo_record_voltage'):
return 'data/trajec_netw'+ self.__get_parameter_string__() + trajec_str + '_seed%d'%(self.seed,) + str2
elif self.__sim_mode__=='pop_tilo':
return 'data/trajec_pop'+ self.__get_parameter_string__() + trajec_str + '_seed%d'%(self.seed,) + str2
elif self.__sim_mode__=='neurons':
return 'data/trj_nrn'+ self.__get_parameter_string__() + trajec_str + str2
elif self.__sim_mode__=='populations':
return 'data/trj_pop'+ self.__get_parameter_string__() + trajec_str + str2
else:
assert(False)
def save_psd(self):
fname=self.__psd_name__()