-
Notifications
You must be signed in to change notification settings - Fork 28
/
setup.py
60 lines (57 loc) · 2.2 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
from setuptools import setup, find_packages
setup(
name='moosez',
version="3.0.7",
author='Lalith Kumar Shiyam Sundar | Sebastian Gutschmayer | Manuel Pires',
author_email='[email protected]',
description='An AI-inference engine for 3D clinical and preclinical whole-body segmentation tasks',
python_requires='>=3.9',
long_description='mooseZ is an AI-inference engine based on nnUNet, designed for 3D clinical and preclinical'
' whole-body segmentation tasks. It serves models tailored towards different modalities such'
' as PET, CT, and MR. mooseZ provides fast and accurate segmentation results, making it a '
'reliable tool for medical imaging applications.',
url='https://github.com/ENHANCE-PET/MOOSE',
license='GPLv3',
classifiers=[
'Development Status :: 4 - Beta',
'Intended Audience :: Developers',
'Intended Audience :: Healthcare Industry',
'License :: OSI Approved :: GNU General Public License v3 (GPLv3)',
'Programming Language :: Python :: 3 :: Only',
'Programming Language :: Python :: 3.10',
'Programming Language :: Python :: 3.9',
'Topic :: Scientific/Engineering :: Medical Science Apps.',
],
keywords='moosez model-zoo nnUNet medical-imaging tumor-segmentation organ-segmentation bone-segmentation'
' lung-segmentation muscle-segmentation fat-segmentation vessel-segmentation'
' vertebral-segmentation rib-segmentation'
' preclinical-segmentation clinical-segmentation',
packages=find_packages(),
install_requires=[
'acvl-utils==0.2',
'nnunetv2',
'halo~=0.0.31',
'SimpleITK',
'pydicom~=2.2.2',
'argparse~=1.4.0',
'numpy<2.0',
'mpire~=2.3.3',
'openpyxl~=3.0.9',
'pyfiglet~=0.8.post1',
'natsort~=8.1.0',
'colorama~=0.4.6',
'dask',
'rich',
'pandas',
'dicom2nifti~=2.4.8',
'emoji',
'matplotlib',
'psutil',
'nibabel'
],
entry_points={
'console_scripts': [
'moosez=moosez.moosez:main',
],
},
)