This repository has been archived by the owner on Nov 10, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathget_board.py
252 lines (219 loc) · 7.05 KB
/
get_board.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
import mss
import numpy as np
from matplotlib import pyplot as plt
from matplotlib import image as mpimg
from pynput import keyboard, mouse
import os
import time
import sys
#globals
mymouse = mouse.Controller()
#functions
with mss.mss() as sct:
monitor = sct.monitors[0]
#img = np.array(sct.grab(monitor))
top = 351
bottom = 644
left = 324
right = 610
def grab_word_blitz_image():
felmonitor = dict(monitor)
mymouse.position = (left - 30, top - 30)
felmonitor['left'] = left
felmonitor['top'] = top
felmonitor['width'] = right - left
felmonitor['height'] = bottom - top
with mss.mss() as sct:
img = np.array(sct.grab(felmonitor))[:,:,:3].astype(np.float32)
#imshow(img, cmap = 'gray')
#plt.show()
return img
def load_image(fname):
return (np.dot(mpimg.imread(fname)[:,:,:3], [0.2126, 0.7152, 0.0722])).astype(np.float32)
def helper(img):
return (img[60:427, 150:508] > 0.5).astype(np.uint8)
def trim(img):
left = 0
marker = 0
while (img[:, left] == marker).mean() > 0.5:
left += 1
right = img.shape[1]
while (img[:, right-1] == marker).mean() > 0.5:
right -= 1
up = 0
while (img[up, :] == marker).mean() > 0.5:
up += 1
down = img.shape[0]
while (img[down-1, :] == marker).mean() > 0.5:
down -= 1
return (img[up:down, left:right], up, left, down, right)
def get_letters(img):
r = int((img.shape[0] + 0.032 * img.shape[0]) / 8)
c = int((img.shape[1] + 0.032 * img.shape[1]) / 8)
s = []
for i in range(4):
s.append([])
for j in range(4):
s[-1].append(img[(2 * i + 1) * r - r // 2 : (2 * i + 1) * r + r // 2, (2 * j + 1) * c - c // 2 : (2 * j + 1) * c + c // 2])
return s
def trim_letters(s, ratio = 0.1):
t = []
marker = 1
for i in s:
t.append([])
for j in i:
down = j.shape[0]
while (j[down-1, :] == marker).all():
down -= 1
#j = j[int(j.shape[0] * 0.1) - down:]
up = int(j.shape[0] * 0.1)
while (j[up, :] == marker).all():
up += 1
left = int(j.shape[1] * 0.1)
while (j[:, left] == marker).all():
left += 1
right = int(j.shape[1] * 0.9)
while (j[:, right-1] == marker).all():
right -= 1
t[-1].append(j[up:down, left:right])
t2 = []
marker = 0
for i in t:
t2.append([])
for j in i:
down = j.shape[0]
while (j[down-1, :] == marker).mean() < ratio:
down -= 1
#j = j[int(j.shape[0] * ratio) - down:]
up = 0
while (j[up, :] == marker).mean() < ratio:
up += 1
left = 0
while (j[:, left] == marker).mean() < ratio:
left += 1
right = j.shape[1]
while (j[:, right-1] == marker).mean() < ratio:
right -= 1
helper = np.ones((35, 35), dtype = np.uint8)
helper[:down-up, :right-left] = j[up:down, left:right]
t2[-1].append(helper)
return t2
def load_dataset():
dataset = {}
for i in 'ΑΒΓΔΕΖΗΘΙΚΛΜΝΞΟΠΡΣΤΥΦΧΨΩ':
os.chdir(i)
images = os.listdir('.')
dataset[i] = []
for j in images:
dataset[i].append((load_image(j) > 0.5).astype(np.float32))
os.chdir('..')
return dataset
def distance(img1, img2):
return abs(img1 - img2).sum()
def which_letter(img, dataset):
mindist = np.inf
letter = None
for i in 'ΑΒΓΔΕΖΗΘΙΚΛΜΝΞΟΠΡΣΤΥΦΧΨΩ':
for j in dataset[i]:
dist = distance(img, j)
#print dist
if dist < mindist:
mindist = dist
letter = i
return letter
def get_modifiers(colored, img):
"""
2 words: [118, 53, 253]
3 words: [91, 198, 254]
2 letters: [214, 201, 126]
3 letters: [255, 146, 194]
"""
mods = {(118, 53, 253) : (1, 2), (91, 198, 254) : (1, 3), (214, 201, 126) : (2, 1), (255, 146, 194) : (3, 1)}
start_cols = []
start_rows = []
left = 0
up = 0
marker = 0
for i in range(4):
while left < img.shape[1] and (img[:, left] == marker).mean() > 0.5:
left += 1
start_cols.append(left)
while left < img.shape[1] and (img[:, left] == marker).mean() < 0.5:
left += 1
while up < img.shape[0] and (img[up] == marker).mean() > 0.5:
up += 1
start_rows.append(up)
while up < img.shape[0] and (img[up] == marker).mean() < 0.5:
up += 1
modifiers = []
for i in start_rows:
modifiers.append([])
for j in start_cols:
modifiers[-1].append(mods.get(tuple(colored[i][j]), (1,1)))
return modifiers
def get_board():
bimg = grab_word_blitz_image().astype(np.uint8)
uncolored = np.dot(bimg, [0.2126, 0.7152, 0.0722]) / 255
img, newtop, newleft, newdown, newright = trim((uncolored > 0.5).astype(np.uint8))
colored = bimg[newtop:newdown, newleft: newright]
modifiers = get_modifiers(colored, img)
newtop += top
newleft += left
t = [[i.astype(np.float32) for i in j] for j in trim_letters(get_letters(img))]
data = load_dataset()
board = []
for i in range(4):
board.append([])
for j in range(4):
board[-1].append((which_letter(t[i][j], data), modifiers[i][j][0], modifiers[i][j][1]))
rgap = 0.033 * img.shape[0]
cgap = 0.033 * img.shape[1]
rlen = img.shape[0] * 0.9 / 4
clen = img.shape[1] * 0.9 / 4
rpos = list(map(int, [rlen / 2, rlen * 3/2 + rgap, rlen * 5/2 + 2 * rgap, rlen * 7/2 + 3 * rgap]))
cpos = list(map(int, [clen / 2, clen * 3/2 + cgap, clen * 5/2 + 2 * cgap, clen * 7/2 + 3 * cgap]))
posboard = [[(j + newleft, i + newtop) for j in cpos] for i in rpos]
return board, posboard
def pb():
x = get_board()
for i in x:
for j in i:
print(j, end = " ")
print()
def save(img, fname):
mpimg.imsave(fname, img)
def store_letters():
import os
img = grab_word_blitz_image()
t = trim_letters(get_letters(trim((img > 0.5).astype(np.uint8))))
letters = input("Input string: ")
for i in range(4):
for j in range(4):
c = letters[4 * i + j]
name = "{}/{}.png".format(c, len(os.listdir(c)))
save(t[i][j], name)
def h2(fname):
img = load_image(fname)
return trim_letters(get_letters(trim(helper(img))))
def store_letters2(fname):
import os
t = h2(fname)
letters = input("Input string: ")
print(letters)
for i in range(4):
for j in range(4):
c = letters[4 * i + j]
name = "{}/{}.png".format(c, len(os.listdir(c)))
save(t[i][j], name)
"""
def h3(l, t):
global s
for i in range(4):
for j in range(4):
c = l[4 * i + j]
if c not in s:
s.add(c)
save(t[i][j], c + ".png")
"""
def save(img, fname):
mpimg.imsave(fname, img)