forked from zylo117/Yet-Another-EfficientDet-Pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
480 lines (405 loc) · 15.7 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
import argparse
import datetime
import os
import traceback
import numpy as np
import torch
import yaml
from tensorboardX import SummaryWriter
from torch import nn
from torch.utils.data import DataLoader
from torchvision import transforms
from tqdm.autonotebook import tqdm
from backbone import EfficientDetBackbone
from efficientdet.dataset import CocoDataset, Resizer, Normalizer, Augmenter, collater
from efficientdet.loss import FocalLoss
import logging
import math
from torch.nn.init import _calculate_fan_in_and_fan_out, _no_grad_normal_
from glob import glob
# adapted from https://github.com/zylo117/Yet-Another-EfficientDet-Pytorch/tree/master by Dominik Lindorfer
def boolean_string(s):
if s not in {"False", "True"}:
raise ValueError("Not a valid boolean string")
return s == "True"
def variance_scaling_(tensor, gain=1.0):
# type: (Tensor, float) -> Tensor
r"""
initializer for SeparableConv in Regressor/Classifier
reference: https://keras.io/zh/initializers/ VarianceScaling
"""
fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor)
std = math.sqrt(gain / float(fan_in))
return _no_grad_normal_(tensor, 0.0, std)
def get_last_weights(weights_path):
weights_path = glob(weights_path + f"/*.pth")
weights_path = sorted(
weights_path, key=lambda x: int(x.rsplit("_")[-1].rsplit(".")[0]), reverse=True
)[0]
logging.info(f"using weights {weights_path}")
return weights_path
def init_weights(model):
for name, module in model.named_modules():
is_conv_layer = isinstance(module, nn.Conv2d)
if is_conv_layer:
if "conv_list" or "header" in name:
variance_scaling_(module.weight.data)
else:
nn.init.kaiming_uniform_(module.weight.data)
if module.bias is not None:
if "classifier.header" in name:
bias_value = -np.log((1 - 0.01) / 0.01)
torch.nn.init.constant_(module.bias, bias_value)
else:
module.bias.data.zero_()
class Params:
def __init__(self, project_file):
self.params = yaml.safe_load(open(project_file).read())
def __getattr__(self, item):
return self.params.get(item, None)
class ModelWithLoss(nn.Module):
def __init__(self, model, debug=False):
super().__init__()
self.criterion = FocalLoss()
self.model = model
self.debug = debug
def forward(self, imgs, annotations, obj_list=None):
_, regression, classification, anchors = self.model(imgs)
if self.debug:
cls_loss, reg_loss = self.criterion(
classification,
regression,
anchors,
annotations,
imgs=imgs,
obj_list=obj_list,
)
else:
cls_loss, reg_loss = self.criterion(
classification, regression, anchors, annotations
)
return cls_loss, reg_loss
def train(opt):
params = Params(f"projects/{opt.project}.yml")
if params.num_gpus == 0:
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
if params.num_gpus > 0:
params.num_gpus = 1
if torch.cuda.is_available():
torch.cuda.manual_seed(42)
else:
torch.manual_seed(42)
# Setup log-directories & training-parameters
opt.saved_path = opt.saved_path + f"/{params.project_name}_D{opt.compound_coef}/"
opt.log_path = (
opt.log_path + f"/{params.project_name}_D{opt.compound_coef}/tensorboard/"
)
os.makedirs(opt.log_path, exist_ok=True)
os.makedirs(opt.saved_path, exist_ok=True)
training_params = {
"batch_size": opt.batch_size,
"shuffle": True,
"drop_last": True,
"collate_fn": collater,
"num_workers": opt.num_workers,
}
val_params = {
"batch_size": opt.batch_size,
"shuffle": False,
"drop_last": True,
"collate_fn": collater,
"num_workers": opt.num_workers,
}
# Setup Dataloaders for train / val
input_sizes = [512, 640, 768, 896, 1024, 1280, 1280, 1536, 1536]
training_set = CocoDataset(
root_dir=os.path.join(opt.data_path, params.project_name),
set=params.train_set,
transform=transforms.Compose(
[
Normalizer(mean=params.mean, std=params.std),
Augmenter(),
Resizer(input_sizes[opt.compound_coef]),
]
),
)
training_generator = DataLoader(training_set, **training_params)
val_set = CocoDataset(
root_dir=os.path.join(opt.data_path, params.project_name),
set=params.val_set,
transform=transforms.Compose(
[
Normalizer(mean=params.mean, std=params.std),
Resizer(input_sizes[opt.compound_coef]),
]
),
)
val_generator = DataLoader(val_set, **val_params)
model = EfficientDetBackbone(
num_classes=len(params.obj_list),
compound_coef=opt.compound_coef,
ratios=eval(params.anchors_ratios),
scales=eval(params.anchors_scales),
)
# Load specified or last-available weights
if opt.load_weights is not None:
if opt.load_weights.endswith(".pth"):
weights_path = opt.load_weights
else:
weights_path = get_last_weights(opt.saved_path)
try:
last_step = int(os.path.basename(weights_path).split("_")[-1].split(".")[0])
except:
last_step = 0
try:
ret = model.load_state_dict(torch.load(weights_path), strict=False)
except RuntimeError as e:
logging.warning(f"Ignoring {e}")
logging.warning(
"Don't panic if you see this, this might be because you load a pretrained weights with different number of classes. The rest of the weights should be loaded already."
)
logging.info(
f"Loaded weights: {os.path.basename(weights_path)}, resuming checkpoint from step: {last_step}"
)
else:
last_step = 0
logging.info("Initializing weights...")
init_weights(model)
# "Head-Only" training = frozen backbone of Efficient-Det architecture
if opt.head_only:
def freeze_backbone(m):
classname = m.__class__.__name__
for ntl in ["EfficientNet", "BiFPN"]:
if ntl in classname:
for param in m.parameters():
param.requires_grad = False
model.apply(freeze_backbone)
logging.info(
"Freezed EfficientDet backbone architecture and only train the head!"
)
writer = SummaryWriter(
opt.log_path + f'/{datetime.datetime.now().strftime("%Y%m%d-%H%M%S")}/'
)
# warp the model with loss function, to reduce the memory usage on gpu0 and speedup
model = ModelWithLoss(model, debug=opt.debug)
# Incase we somehow would get more thatn just 1 GPU for this training
if params.num_gpus > 0:
model = model.cuda()
# Set Optimizer
if opt.optim == "adamw":
optimizer = torch.optim.AdamW(model.parameters(), opt.lr)
else:
optimizer = torch.optim.SGD(
model.parameters(), opt.lr, momentum=0.9, nesterov=True
)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(
optimizer, patience=3, verbose=True
)
epoch = 0
best_loss = 1e5
best_epoch = 0
step = max(0, last_step)
model.train()
num_iter_per_epoch = len(training_generator)
try:
for epoch in range(opt.num_epochs):
last_epoch = step // num_iter_per_epoch
# skip epochs in case of 2-step head->full training
if epoch < last_epoch:
continue
epoch_loss = []
progress_bar = tqdm(training_generator)
for iter, data in enumerate(progress_bar):
if iter < step - last_epoch * num_iter_per_epoch:
progress_bar.update()
continue
try:
imgs = data["img"]
annot = data["annot"]
if params.num_gpus == 1:
imgs = imgs.cuda()
annot = annot.cuda()
optimizer.zero_grad()
cls_loss, reg_loss = model(imgs, annot, obj_list=params.obj_list)
cls_loss = cls_loss.mean()
reg_loss = reg_loss.mean()
loss = cls_loss + reg_loss
if loss == 0 or not torch.isfinite(loss):
continue
loss.backward()
optimizer.step()
epoch_loss.append(float(loss))
progress_bar.set_description(
"Step: {}. Epoch: {}/{}. Iteration: {}/{}. Cls loss: {:.5f}. Reg loss: {:.5f}. Total loss: {:.5f}".format(
step,
epoch,
opt.num_epochs,
iter + 1,
num_iter_per_epoch,
cls_loss.item(),
reg_loss.item(),
loss.item(),
)
)
writer.add_scalars("Loss", {"train": loss}, step)
writer.add_scalars("Regression_loss", {"train": reg_loss}, step)
writer.add_scalars("Classfication_loss", {"train": cls_loss}, step)
# log learning_rate
current_lr = optimizer.param_groups[0]["lr"]
writer.add_scalar("learning_rate", current_lr, step)
step += 1
if step % opt.save_interval == 0 and step > 0:
torch.save(
model.model.state_dict(),
os.path.join(
opt_params.saved_path,
f"efficientdet-d{opt.compound_coef}_{epoch}_{step}.pth",
),
)
logging.info("checkpoint...")
except Exception as e:
logging.error(traceback.format_exc())
logging.error(e)
continue
scheduler.step(np.mean(epoch_loss))
if epoch % opt.val_interval == 0:
model.eval()
loss_regression_ls = []
loss_classification_ls = []
for iter, data in enumerate(val_generator):
with torch.no_grad():
imgs = data["img"]
annot = data["annot"]
if params.num_gpus == 1:
imgs = imgs.cuda()
annot = annot.cuda()
cls_loss, reg_loss = model(
imgs, annot, obj_list=params.obj_list
)
cls_loss = cls_loss.mean()
reg_loss = reg_loss.mean()
loss = cls_loss + reg_loss
if loss == 0 or not torch.isfinite(loss):
continue
loss_classification_ls.append(cls_loss.item())
loss_regression_ls.append(reg_loss.item())
cls_loss = np.mean(loss_classification_ls)
reg_loss = np.mean(loss_regression_ls)
loss = cls_loss + reg_loss
logging.info(
"Val. Epoch: {}/{}. Classification loss: {:1.5f}. Regression loss: {:1.5f}. Total loss: {:1.5f}".format(
epoch, opt.num_epochs, cls_loss, reg_loss, loss
)
)
writer.add_scalars("Loss", {"val": loss}, step)
writer.add_scalars("Regression_loss", {"val": reg_loss}, step)
writer.add_scalars("Classfication_loss", {"val": cls_loss}, step)
if loss + opt.es_min_delta < best_loss:
best_loss = loss
best_epoch = epoch
torch.save(
model.model.state_dict(),
os.path.join(
opt_params.saved_path,
f"efficientdet-d{opt.compound_coef}_{epoch}_{step}.pth",
),
)
model.train()
# Stop if early stopping criterion is specified
if epoch - best_epoch > opt.es_patience > 0:
logging.info(
"Stop training at epoch {}. The lowest loss achieved is {}".format(
epoch, best_loss
)
)
break
except KeyboardInterrupt:
torch.save(
model.model.state_dict(),
os.path.join(
opt_params.saved_path,
f"efficientdet-d{opt.compound_coef}_{epoch}_{step}.pth",
),
)
writer.close()
writer.close()
if __name__ == "__main__":
parser = argparse.ArgumentParser("Efficient-CharacterDet")
parser.add_argument(
"-p",
"--project",
type=str,
default="numbers",
help="Project-file that contains dataset-specific parameters",
)
parser.add_argument(
"-c",
"--compound_coef",
type=int,
default=0,
help="Efficientdet Coefficient i.e. architecture",
)
parser.add_argument(
"-n", "--num_workers", type=int, default=12, help="num_workers of dataloader"
)
parser.add_argument(
"--batch_size",
type=int,
default=12,
help="The number of images per batch",
)
parser.add_argument(
"--head_only",
type=boolean_string,
default=True,
help="Train only the EfficientDet-head or the full NN; useful in early stage convergence or for small/easy datasets",
)
parser.add_argument("--lr", type=float, default=1e-3)
parser.add_argument(
"--optim",
type=str,
default="adamw",
help="Select the optimizer for training, AdamW or SGD",
)
parser.add_argument("--num_epochs", type=int, default=50)
parser.add_argument(
"--val_interval",
type=int,
default=1,
help="Number of epoches between validation phases",
)
parser.add_argument(
"--save_interval", type=int, default=100, help="Number of steps between saving"
)
parser.add_argument(
"--es_min_delta",
type=float,
default=0.0,
help="Early stopping parameter: minimum change loss to qualify as an improvement",
)
parser.add_argument(
"--es_patience",
type=int,
default=0,
help="Early stopping parameter: number of epochs with no improvement after which training will be stopped. Set to 0 to disable this technique",
)
parser.add_argument(
"--data_path", type=str, default="datasets/", help="The dataset folder"
)
parser.add_argument("--log_path", type=str, default="logs/")
parser.add_argument(
"-w",
"--load_weights",
type=str,
default="weights/efficientdet-d0.pth",
help="Loag weights from a checkpoint or set to None to initialize; set 'last' to load last available checkpoint in logs/project directory",
)
parser.add_argument("--saved_path", type=str, default="logs/")
parser.add_argument(
"--debug",
type=boolean_string,
default=False,
help="whether visualize the predicted boxes of training; the output images will be in test/",
)
opt_params = parser.parse_args()
train(opt_params)