-
Notifications
You must be signed in to change notification settings - Fork 125
/
Copy pathdialog_manage.py
118 lines (91 loc) · 3.63 KB
/
dialog_manage.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
#!/usr/bin/python3
#-*- coding: utf-8 -*-
from search_dialog.search_core import SearchCore
from seq2seq_dialog.infer import get_infer_model, predict
from task_dialog.task_core import TaskCore
from utils.nlp_util import NlpUtil
from utils.tools import ch_count
from utils.tools import log_print
class DialogStatus(object):
def __init__(self):
self.intent = None
# Universal slots
self.ware_id = None
self.order_id = None
# Special slots
self.start_flag = None
self.sale_return_intent = None
self.invoice_intent = None
self.query_intent = None
self.order_related = None
# unbind
self.unbind_flag = None
self.unbind_identify = None
self.unbind_phone = None
self.unbind_new_phone = None
self.unbind_success = None
# price protect
self.price_protect_success = None
# dialog context
self.context = []
class DialogManagement(object):
seq2seq_inst = get_infer_model(dialog_mode="single_turn")
dialog_status = DialogStatus()
@classmethod
def _predict_via_seq2seq(cls, msg_tokens):
user_msgs = " ".join(cls.dialog_status.context[::2][-4:])
log_print("seq2seq_input=%s" % user_msgs)
response = predict(cls.seq2seq_inst, user_msgs, ret_size=1)
return response
@classmethod
def process_dialog(cls, msg, use_task=True):
"""
Dialog strategy: use sub-task to handle dialog firstly,
if failed, use retrieval or generational func to handle it.
"""
# Task response.
if use_task:
task_response, cls.dialog_status = TaskCore.task_handle(
msg, cls.dialog_status)
else:
task_response = None
# Search response.
if len(cls.dialog_status.context) >= 3 and ch_count(msg) <= 4:
user_msgs = cls.dialog_status.context[::2][-3:]
msg = "<s>".join(user_msgs)
mode = "cr"
else:
mode = "qa"
msg_tokens = NlpUtil.tokenize(msg, True)
search_response, sim_score = SearchCore.search(msg_tokens, mode=mode)
# Seq2seq response.
seq2seq_response = cls._predict_via_seq2seq(msg_tokens)
log_print("search_response=%s" % search_response)
log_print("seq2seq_response=%s" % seq2seq_response)
if task_response:
response = task_response
elif sim_score >= 1.0:
response = search_response
else:
response = seq2seq_response
return response
def start_dialog():
print ("\nChatbot: %s\n" % ("您好,我是可爱的人工智能机器人小智,有问题都可以向我提问哦~"))
print ("input1: ", end="")
while True:
msg = input().strip()
if msg.lower() == "finish":
DialogManagement.dialog_status = DialogStatus()
print ("Chatbot: %s\n\n" % "change session", end="")
print ("input1: ", end="")
elif msg.lower() == "exit":
print ("Chatbot: %s\n\n" % ("感谢您对京东的支持,我们下次再见呢~, 拜拜亲爱哒"))
exit()
else:
DialogManagement.dialog_status.context.append(msg)
response = DialogManagement.process_dialog(msg, use_task=True)
DialogManagement.dialog_status.context.append(response)
print ("output%d: %s\n\n" % (len(DialogManagement.dialog_status.context) / 2, response), end="")
print ("input%d: " % (len(DialogManagement.dialog_status.context) / 2 + 1), end="")
if __name__ == "__main__":
start_dialog()