-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
101 lines (81 loc) · 3.71 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
import os
import datetime
import gdown
from shutil import unpack_archive
import librosa
import torch
from transformers import Wav2Vec2FeatureExtractor, Wav2Vec2CTCTokenizer, Wav2Vec2Processor
import subprocess
from pyAudioAnalysis.audioSegmentation import silence_removal
from pyAudioAnalysis.audioBasicIO import read_audio_file
from scipy.io import wavfile
class STTPipeline:
def __init__(self, m_path):
self.check_download_models(m_path)
STT_MODEL_PATH, STT_VOCAB_FILE = self.get_model_files_dirs(m_path)
self.SAMPLING_RATE = 16000
print("Initializing STT Model")
tokenizer = Wav2Vec2CTCTokenizer(STT_VOCAB_FILE, unk_token="[UNK]", pad_token="[PAD]", word_delimiter_token="|")
feature_extractor = Wav2Vec2FeatureExtractor(feature_size=1, sampling_rate=self.SAMPLING_RATE, padding_value=0.0,
do_normalize=True, return_attention_mask=False)
self.processor = Wav2Vec2Processor(feature_extractor=feature_extractor, tokenizer=tokenizer)
self.model = torch.jit.load(STT_MODEL_PATH)
def get_model_files_dirs(self, models_dir):
model_dir = os.path.join(models_dir, "stt_model")
STT_MODEL_PATH = os.path.join(model_dir, "wav2vec_traced_quantized.pt")
STT_VOCAB_FILE = os.path.join(model_dir, "vocab.json")
return STT_MODEL_PATH, STT_VOCAB_FILE
def check_download_models(self, models_dir):
# set output dir
model, vocab = self.get_model_files_dirs(models_dir)
if os.path.exists(model) and os.path.exists(vocab):
return
# download and extract
print("Downloading STT Model")
op_file = os.path.join(models_dir, "w2v2-53.tar.gz")
os.makedirs(models_dir, exist_ok=True)
gdown.download(
f"https://drive.google.com/uc?id=1m6QXhMF9Zf6P04Z1D2qFiQjEFo16Vexv",
op_file
)
unpack_archive(op_file, models_dir)
def __call__(self, audio_path):
audio_input, sr = librosa.load(audio_path, sr=self.SAMPLING_RATE)
inputs = self.processor(
audio_input,
sampling_rate=self.SAMPLING_RATE,
return_tensors="pt",
padding=True
)
with torch.no_grad():
logits = self.model(inputs.input_values)['logits']
predicted_ids = torch.argmax(logits, dim=-1)
transcription = self.processor.batch_decode(predicted_ids)[0]
return transcription
def video2audio(input_file, audio_file_name):
command = "ffmpeg -hide_banner -loglevel warning -i \"{}\" -b:a 192k -ac 1 -ar 16000 -vn \"{}\"".format(input_file, audio_file_name)
try:
print(f"Running {command}")
ret = subprocess.call(command, shell=True)
print("Extracted audio to {}".format(audio_file_name.split("/")[-1]))
except Exception as e:
print("Error: ", str(e))
exit(1)
def extractAudio(input_file, output_dir, smoothing_window = 1.0, weight = 0.1):
print("Detecting silences...")
[fs, x] = read_audio_file(input_file)
segmentLimits = silence_removal(x, fs, 0.05, 0.05, smoothing_window, weight)
ifile_name = os.path.basename(input_file)
os.makedirs(output_dir, exist_ok=True)
files = []
print("Writing segments...")
for i, s in enumerate(segmentLimits):
strOut = "{0:s}_{1:.3f}-{2:.3f}.wav".format(ifile_name, s[0], s[1])
strOut = os.path.join(output_dir, strOut)
wavfile.write(strOut, fs, x[int(fs * s[0]):int(fs * s[1])])
files.append(strOut)
return files
def process_audio(audio_file, stt: STTPipeline):
start, end = audio_file.split("/")[-1][:-4].split("_")[-1].split("-")
transcription = stt(audio_file)
return start, end, transcription