-
Notifications
You must be signed in to change notification settings - Fork 0
/
ddcaPORT.c
767 lines (712 loc) · 21.2 KB
/
ddcaPORT.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
/*
* ddcaPORT.c
* The deterministic DCA
* Created by Julie Greensmith on 27/03/2008.
* Modified by Feng Gu on 11/07/2008.
* The function of calculating MCAV and Kalpha has been integrated.
*
* Modified by Denis Pilipenko on 02/05/2013
* Adapted for multiple data stream processing
* Dual and Multiple Cooccurrence Analysis integrated
* DDCA for the analysis of port scan data
*/
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <ctype.h>
#include <math.h>
#include <time.h>
#define FACTOR 100
#define NUM_INPUT 2
#define NUM_OUTPUT 3
#define MAX_MIG 10000 /*original migration threshold */
#define NUM_CELL 1001 /*original number of cells in population */
#define TIME_WIN_SAVE 0.001 /*time window for saving timestamps*/
#define TIME_WIN_CO 0.01 /*time window for checking cooccurrence*/
void cooccurrenceRec(int aId);
struct DC
{
float lifespan; /*migration threshold countdown */
float k; /*K value variable */
int antigen[99999]; /*local antigen profile */
int iter; /*the number of iterations of signal updates received*/
int incarnations;
int id;
int totIter;
int totAg; /*the total amount of antigen a DC has collected per incarnation */
};
struct agtype
{
float s,m,k,mcav;
int id;
int timeNum; /*timestamp index */
double t[200]; /*timestamp collection array */
int antigens[20][2]; /*2D array for storing dual cooccurrences */
int ant_index; /*cooccurrence index */
};
/* DC populations initialisation (1-4) */
static struct DC *cell1;
static struct DC *cell2;
static struct DC *cell3;
static struct DC *cell4;
static unsigned int numCells; /*DC population size */
static float maxMig; /*migration threshold */
static double timeWinSave; /* time window for saving timestamps*/
static double timeWinCo; /* time window for checking the cooccurrence*/
static unsigned int cell_index1;
static unsigned int cell_index2;
static unsigned int cell_index3;
static unsigned int cell_index4;
static unsigned int ags_index; /*index for dangerous antigen profile */
int cooccurrenceTemp[100][50]; /*array for storing multiple cooccurrences */
int tempIndex1;
int tempIndex2;
char text[20]; /*buffer for user input */
static struct agtype agsG[99999]; /*global antigen profile */
static struct agtype agsD[100]; /*dangerous antigen profile */
/*
* dc - the DC structure; numCells - size of the population;
* cell - DC population;
* A function that initialises a DC in the population
*/
static void initDC(struct DC *dc, int numCells, struct DC *cell)
{
float tm_interval;
tm_interval = maxMig / (numCells-1);
dc->id = dc - cell;
dc->lifespan = ((dc) - cell) * tm_interval;
printf("lifespan = %f, tm_interval =%f\n", dc->lifespan, tm_interval);
dc->iter = 0;
dc->totIter = 0;
dc->incarnations = 0;
dc->totAg = 0;
}
/*
* dc - the DC structure;
* A function that displays the DC statistics
*/
static void dc_stats(struct DC *dc)
{
float iterIncarn;
if(dc->incarnations > 0)
{
iterIncarn = (float) dc->totIter / dc->incarnations;
}
else
{
iterIncarn = dc->totIter;
}
printf("DC_id: %d, num incarnations: %d, iter/inc: %f\n", dc->id, dc->incarnations, iterIncarn);
}
/*
* str - input; split - separator; toks - array of input elements;
* max_toks - maximum number of elements;
* A function that parses a single data input
*/
static int easy_explode(char *str, char split, char **toks, int max_toks)
{
char *tmp;
int tok;
int state;
for(tmp=str,state=tok=0; *tmp && tok < max_toks; tmp++)
{
if ( state == 0 )
{
if ( *tmp == split )
{
toks[tok++] = NULL;
}
else if ( !isspace(*tmp) )
{
state = 1;
toks[tok++] = tmp;
}
}
else if ( state == 1 )
{
if ( *tmp == split || isspace(*tmp) )
{
*tmp = '\0';
state = 0;
}
}
}
return tok;
}
/*
* ag - antigen id; dc - DC structure; time - timestamp; ags - antigen profile
* A function that processes the antigen for a given DC and saves the timestamp
*/
static void do_antigen(pid_t ag, struct DC *dc, double time, struct agtype *ags)
{
dc->antigen[ag]++;
if (ags[ag].timeNum >= 0 && ags[ag].timeNum < 200)
{ // checks that the current timestamp is not within a specified time window
if(ags[ag].timeNum == 0 || (ags[ag].timeNum > 0 &&
fabs(ags[ag].t[ags[ag].timeNum] - (ags[ag].t[ags[ag].timeNum - 1])) >= timeWinSave))
{
ags[ag].t[ags[ag].timeNum] = time;
ags[ag].timeNum++;
if (ags[ag].timeNum == 200)
ags[ag].timeNum = 0;
}
}
if (!ags[ag].timeNum)
{
ags[ag].t[0] = time;
ags[ag].timeNum = 1;
}
}
/*
* dc - DC structure; ags - antigen profile
* A function that updates the global antigen profile by a given DC
*/
static void log_antigen(struct DC *dc, struct agtype *ags)
{
int q;
int yy;
for(q =0; q< 99999; q++)
{
if(dc->antigen[q])
{
dc->totAg +=dc->antigen[q];
for(yy= 0; yy < dc->antigen[q]; yy++)
{
ags[q].k = ags[q].k + dc->k;
if(dc->k > 0)
{
ags[q].m = ags[q].m + 1; // update m if mature cell (danger)
}
else
{
ags[q].s = ags[q].s + 1; // update s if semi-mature cell (safe)
}
}
dc->antigen[q] = 0;
}
}
//printf("DC_id: %d, totAg: %d , iter: %d \n", dc->id, dc->totAg, dc->iter);
}
/*
* K - K value; csm - CSM value; dc - DC structure; currJ - current cell index; ags - antigen profile;
* *cell - DC population;
* A function that updates the DC based on the signal's K and CSM values
*/
static void update_DC(float K, float csm, struct DC *dc, int currJ, struct agtype *ags, struct DC *cell)
{
int tr_interval;
/* update DC output signals */
dc->lifespan -= csm;
dc->k += K;
dc->iter++;
if (dc->lifespan <= 0) // cell reincarnation if lifespan has reached zero
{
log_antigen(dc, ags);
tr_interval = (float) MAX_MIG / (numCells - 1);
dc->lifespan = ((dc) - cell) * tr_interval;
dc->k = 0;
dc->totIter += dc->iter;
//printf("running totIter %d", dc->totIter);
//printf("reset DC lifespan is %f \n", dc->lifespan);
//printf("iterations of cell[%d]: %d \n", currJ, dc->iter);
dc->iter = 0;
dc->totAg = 0;
dc->incarnations++;
}
/* pass antigen to the global antigen profile */
}
/*
* sig1 and sig2 - danger and safe signals; cell - DC population; num_cells - number of cells;
* ags - antigen profile;
* A function that processes the incoming signals and passes this information for the DC update
*/
static void do_signals(float sig1, float sig2, struct DC *cell, int num_cells, struct agtype *ags)
{
float csm;
float k;
int j;
csm = sig1 + sig2;
k = (sig1 - sig2) - sig2;
//printf("signal: csm=%f k=%f\n", csm, k);
for(j=0; j< num_cells; j++)
{
update_DC(k, csm, &cell[j], j, ags, cell);
}
}
/*
* *buf - input buffer; *cell - DC population; *cell_index - population's cell index;
* *ags - antigen profile;
* A function that processes data stream lines and calls the functions for antigen and
* signal processing
*/
static void input_line(char *buf, struct DC *cell, int *cell_index, struct agtype *ags)
{
char *tok[4];
int n,p;
int index;
pid_t ag;
double time;
float sig1, sig2;
char *sp = " "; // this is the separation between attributes
index = *cell_index;
n = easy_explode(buf, *sp, tok, 4);
switch ( n )
{
case 3: /*this is antigen that has 3 fields*/
if (strcmp(tok[1], "antigen"))
{
fprintf(stderr, "wrong antigen input\n");
getchar();
exit(EXIT_FAILURE);
}
ag = atoi(tok[2]); // antigen ID
time = strtod(tok[0], NULL); // timestamp
index++;
index %= numCells;
do_antigen(ag, &cell[index], time, ags);
*cell_index = index;
break;
case 4: /*this is for signals that have 4 fields */
if(strcmp(tok[1], "signal"))
{
fprintf(stderr, "wrong signal input\n");
getchar();
exit(EXIT_FAILURE);
}
sig1 = atof(tok[2]); // danger signal
sig2 = atof(tok[3]); // safe signal
do_signals(sig1, sig2, cell, numCells, ags);
break;
default:
fprintf(stderr, "wrong input\n");
getchar();
exit(EXIT_FAILURE);
}
}
/*
* *ags - antigen profile;
* A function that calculates the MCAV and K values of the antigens
* in the global profile and updates the 'dangerous' antigen profile
*/
static void result(struct agtype *ags)
{
int i,p;
float mcav,ka;
for(i=0; i<99999; i++)
{
if((ags[i].m + ags[i].s) != 0)
{
mcav = ags[i].m/(ags[i].m + ags[i].s);
ka = ags[i].k/(ags[i].m + ags[i].s);
printf("AgType %d %f %f\n", i, mcav, ka);
if (mcav > 0)
{
agsD[ags_index] = ags[i];
agsD[ags_index].id = i;
agsD[ags_index].mcav = mcav;
agsD[ags_index].k = ka;
agsD[ags_index].ant_index = 0;
ags_index++;
}
}
}
}
/*
* id - antigen ID;
* A function that checks if the given antigen has already been
* recorded in any of the cooccurrences
*/
static int checkCooccurrence(int id)
{
int k,l;
for(k=0; k<=tempIndex1; k++)
{
l = 0;
while(cooccurrenceTemp[k][l])
{
if(id == cooccurrenceTemp[k][l])
return k;
l++;
}
}
return -1;
}
/*
* id - antigen ID; dId - antigen ID;
* A function that returns the ID for the cooccurrence recording
* in the antigen's local 2D array
*/
static int checkAntigen(int id, int dId)
{
int j;
for(j=0; j< 20; j++)
{
if(id == agsD[dId].antigens[j][0])
return j;
}
return -1;
}
/*
* Dual Cooccurrence function
* A function that compares the timestamps of dangerous antigens and records the matches
*/
static void cooccurrence()
{
int q,p,i,k,j;
int aId;
for(q =0; q < (ags_index-1); q++)
{
memset(agsD[q].antigens, 0, sizeof(agsD[q].antigens[0][0]) * 20 * 2);
for(i = (q+1); i < ags_index; i++)
{
for(p=0; p< 200; p++)
{
for(k=0; k<200; k++)
{ // check that the antigens are within the same time window
if (agsD[q].t[p] && agsD[i].t[k] && fabs(agsD[q].t[p] - agsD[i].t[k]) <= timeWinCo)
{
aId = checkAntigen(agsD[i].id, q);
if (aId != -1) // increment the number of matches
agsD[q].antigens[aId][1] = agsD[q].antigens[aId][1] + 1;
else
{ // add a new entry if has not been previously recorded
agsD[q].antigens[agsD[q].ant_index][0] = agsD[i].id;
agsD[q].antigens[agsD[q].ant_index][1] = agsD[q].antigens[agsD[q].ant_index][1] + 1;
agsD[q].ant_index = agsD[q].ant_index + 1;
}
}
}
}
}
}
printf("\nDual Cooccurrence:\n"); // print the Dual cooccurrences
for(j=0; j<100; j++)
{
if(agsD[j].id)
{
for (i=0; i<20; i++)
{
if (agsD[j].antigens[i][1] != 0)
printf("%d - %d (%d times)\n", agsD[j].id, agsD[j].antigens[i][0], agsD[j].antigens[i][1]);
}
}
}
}
/*
* Multiple Cooccurrence Function
* A function that groups the interconnected antigens into a string
*/
static void multiCooccurrence()
{
int i,j,l;
printf("\nMultiple Cooccurrence:\n");
tempIndex1 = 0;
for(j=0; j<100; j++)
{
if(agsD[j].id)
{
tempIndex2 = 0;
for (i=0; i<20; i++)
{
if (agsD[j].antigens[i][1] != 0 && checkCooccurrence(agsD[j].antigens[i][0]) == -1)
{
if (checkCooccurrence(agsD[j].id) == -1)
{
cooccurrenceTemp[tempIndex1][tempIndex2] = agsD[j].id;
tempIndex2++; // add the first element of the string
}
cooccurrenceTemp[tempIndex1][tempIndex2] = agsD[j].antigens[i][0];
tempIndex2++; // add the cooccurred elements and increment the index
cooccurrenceRec(agsD[j].antigens[i][0]); // start the recursive method with the added antigens
}
}
for (l=0; l<tempIndex2 && tempIndex2 > 2; l++) // print the results
{
printf("%d ", cooccurrenceTemp[tempIndex1][l]);
}
if (tempIndex2 > 2)
{
printf("\n\n");
tempIndex1++;
}
}
}
}
/*
* A recursive function that supplements the Multiple Cooccurrence function
*/
void cooccurrenceRec(int aId)
{
int i,j;
for (i=0; i<100; i++) {
if (agsD[i].id) {
for (j=0; j<20; j++)
{ // check if any other antigens have a cooccurrence with this ID
if (agsD[i].antigens[j][0] == aId && agsD[i].antigens[j][1] != 0 && checkCooccurrence(agsD[i].id) == -1)
{
cooccurrenceTemp[tempIndex1][tempIndex2] = agsD[i].id;
tempIndex2++;
}
}
}
if (agsD[i].id == aId)
{
for (j=0; j<20; j++)
{ // check if this antigen ID has any other cooccurrences
if (agsD[i].antigens[j][1] != 0 && checkCooccurrence(agsD[i].antigens[j][0]) == -1)
{
cooccurrenceTemp[tempIndex1][tempIndex2] = agsD[i].antigens[j][0];
tempIndex2++;
cooccurrenceRec(agsD[i].antigens[j][0]); // apply the same function on new cooccurrences
}
}
}
}
}
/*
* A function that saves the results in a file called "output.txt"
*
*/
void printOutput()
{
time_t t;
time(&t);
int q,j,i,k,l;
FILE *file;
file = fopen("output.txt","a+"); // name of the file
fprintf(file, "\n\n%sAntigen profile:\n", ctime(&t)); // primary Antigen Profile
for(q =0; q < ags_index; q++)
{
fprintf(file, "id %d, mcav %f, k %f\n", agsD[q].id, agsD[q].mcav, agsD[q].k);
}
fprintf(file, "\nDual Cooccurrence:\n"); // Dual Cooccurrence Analysis
for(j=0; j<100; j++)
{
if(agsD[j].id)
{
for (i=0; i<20; i++)
{
if (agsD[j].antigens[i][1] != 0)
fprintf(file, "%d - %d (%d times)\n", agsD[j].id, agsD[j].antigens[i][0], agsD[j].antigens[i][1]);
}
}
}
fprintf(file, "\nMultiple Cooccurrence:\n"); // Multiple Cooccurrence Analysis
for(k=0; k<=tempIndex1; k++)
{
l = 0;
if (cooccurrenceTemp[k][2])
{
while(cooccurrenceTemp[k][l])
{
fprintf(file, "%d ", cooccurrenceTemp[k][l]);
l++;
}
fprintf(file, "\n\n");
}
}
fclose(file);
}
/*
* A function that takes the input from user
*/
const char * getText()
{
if ( fgets(text, sizeof text, stdin) != NULL )
{
char *newline = strchr(text, '\n');
if ( newline != NULL )
{
*newline = '\0';
}
}
return text;
}
int main(int argc, char **argv)
{
int numberStr; // number of Streams
int verification = -1;
time_t t;
time(&t);
srand(time(NULL));
printf("Please enter the number of DC (100 - 1001):\n");
while (verification == -1)
{
sscanf(getText(), "%d", &numCells);
if (numCells >= 100 && numCells <= 1001)
verification = 1;
else
printf("Error: please enter a number from 100 to 1001\n");
}
verification = -1;
printf("Please enter the Migration threshold (1000 - 10001):\n");
while (verification == -1)
{
sscanf(getText(), "%f", &maxMig);
if (maxMig >= 1000 && maxMig <= 10001)
verification = 1;
else
printf("Error: please enter a number from 1000 to 10001\n");
}
verification = -1;
printf("Please enter the number of streams (1-4):\n");
while (verification == -1)
{
sscanf(getText(), "%d", &numberStr);
if (numberStr == 1 || numberStr == 2 || numberStr == 3 || numberStr == 4)
verification = 1;
else
printf("Error: please enter a number from 1 to 4\n");
}
const char* filename1;
const char* filename2;
const char* filename3;
const char* filename4;
FILE *file1;
FILE *file2;
FILE *file3;
FILE *file4;
if (numberStr >= 1)
{
printf("Please enter the name of the 1st log:\n");
filename1 = getText();
file1 = fopen ( filename1, "r" );
}
if (numberStr >= 2)
{
printf("Please enter the name of the 2nd log:\n");
filename2 = getText();
file2 = fopen ( filename2, "r" );
}
if (numberStr >= 3)
{
printf("Please enter the name of the 3rd log:\n");
filename3 = getText();
file3 = fopen ( filename3, "r" );
}
if (numberStr >= 4)
{
printf("Please enter the name of the 4th log:\n");
filename4 = getText();
file4 = fopen ( filename4, "r" );
}
char buf[256];
int i;
int p; /*some counters */
int q;
cell_index1 = 0; /* for the selection of DCs per antigen */
cell_index2 = 0; /* for the selection of DCs per antigen */
cell_index3 = 0; /* for the selection of DCs per antigen */
cell_index4 = 0; /* for the selection of DCs per antigen */
ags_index = 0;
timeWinSave = (double) TIME_WIN_SAVE;
timeWinCo = (double) TIME_WIN_CO;
cell1= calloc(numCells, sizeof(struct DC));
cell2= calloc(numCells, sizeof(struct DC));
cell3= calloc(numCells, sizeof(struct DC));
cell4= calloc(numCells, sizeof(struct DC));
if(cell1==NULL && cell2==NULL && cell3==NULL && cell4==NULL)
{
printf("Error in cell initialisation\n");
return EXIT_FAILURE;
}
// initialise the DCs in the populations
for(i=0; i < numCells; i++)
{
initDC(&cell1[i], numCells, cell1);
initDC(&cell2[i], numCells, cell2);
initDC(&cell3[i], numCells, cell3);
initDC(&cell4[i], numCells, cell4);
}
// read the data logs
if (numberStr >= 1) {
while (fgets (buf, sizeof(buf), file1) != NULL ) /* read a line */
{
char *tmp;
tmp = strchr(buf, '\n');
if(tmp)
{
*tmp = 0;
}
input_line(buf, cell1, &cell_index1, agsG);
}
fclose(file1);
}
if (numberStr >= 2) {
while (fgets (buf, sizeof(buf), file2) != NULL ) /* read a line */
{
char *tmp;
tmp = strchr(buf, '\n');
if(tmp)
{
*tmp = 0;
}
input_line(buf, cell2, &cell_index2, agsG);
}
fclose(file2);
}
if (numberStr >= 3) {
while (fgets (buf, sizeof(buf), file3) != NULL ) /* read a line */
{
char *tmp;
tmp = strchr(buf, '\n');
if(tmp)
{
*tmp = 0;
}
input_line(buf, cell3, &cell_index3, agsG);
}
fclose(file3);
}
if (numberStr >= 4) {
while (fgets (buf, sizeof(buf), file4) != NULL ) /* read a line */
{
char *tmp;
tmp = strchr(buf, '\n');
if(tmp)
{
*tmp = 0;
}
input_line(buf, cell4, &cell_index4, agsG);
}
fclose(file4);
}
// update the antigens in the global profile
for(p = 0; p < numCells; p++)
{
//printf("flushed cell ID %d\n", p);
log_antigen(&cell1[p], agsG);
log_antigen(&cell2[p], agsG);
log_antigen(&cell3[p], agsG);
log_antigen(&cell4[p], agsG);
}
// print the DC statistics
for(q =0; q <numCells; q++)
{
dc_stats(&cell1[q]);
dc_stats(&cell2[q]);
dc_stats(&cell3[q]);
dc_stats(&cell4[q]);
}
free((void*) cell1);
free((void*) cell2);
free((void*) cell3);
free((void*) cell4);
result(agsG);
printf("process is finished...\n\n");
printf("%sAntigen profile:\n", ctime(&t)); // print out the dangerous antigens' profiles
if(ags_index == 0) {
printf("No dangerous antigens found\n");
getchar();
return EXIT_SUCCESS;
}
for(q =0; q < ags_index; q++)
{
printf("id %d, mcav %f, k %f\n", agsD[q].id, agsD[q].mcav, agsD[q].k);
}
cooccurrence(); // Dual Cooccurrence
multiCooccurrence(); // Multiple Cooccurrence
printOutput(); // save the output in a file
getchar();
return EXIT_SUCCESS;
}