-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathrollout.py
57 lines (46 loc) · 1.62 KB
/
rollout.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import numpy as np
import os, sys, glob
import gym
from hparams import HyperParams as hp
def rollout():
env = gym.make("CarRacing-v0")
seq_len = 1000
max_ep = hp.n_rollout
feat_dir = hp.data_dir
os.makedirs(feat_dir, exist_ok=True)
for ep in range(max_ep):
obs_lst, action_lst, reward_lst, next_obs_lst, done_lst = [], [], [], [], []
env.reset()
action = env.action_space.sample()
obs, reward, done, _ = env.step(action)
done = False
t = 0
while not done or t < seq_len:
t += 1
action = env.action_space.sample()
next_obs, reward, done, _ = env.step(action)
np.savez(
os.path.join(feat_dir, 'rollout_{:03d}_{:04d}'.format(ep,t)),
obs=obs,
action=action,
reward=reward,
next_obs=next_obs,
done=done,
)
obs_lst.append(obs)
action_lst.append(action)
reward_lst.append(reward)
next_obs_lst.append(next_obs)
done_lst.append(done)
obs = next_obs
np.savez(
os.path.join(feat_dir, 'rollout_ep_{:03d}'.format(ep)),
obs=np.stack(obs_lst, axis=0), # (T, C, H, W)
action=np.stack(action_lst, axis=0), # (T, a)
reward=np.stack(reward_lst, axis=0), # (T, 1)
next_obs=np.stack(next_obs_lst, axis=0), # (T, C, H, W)
done=np.stack(done_lst, axis=0), # (T, 1)
)
if __name__ == '__main__':
np.random.seed(hp.seed)
rollout()