-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathhparams.py
96 lines (71 loc) · 1.67 KB
/
hparams.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
class HyperParams:
vision = 'VAE'
memory = 'RNN'
controller = 'A3C'
extra = False
data_dir = 'datasets'
extra_dir = 'additional'
ckpt_dir = 'ckpt'
img_height = 96
img_width = 96
img_channels = 3
batch_size = 2 # actually batchsize * Seqlen
seq_len = 32
test_batch = 1
n_sample = 64
vsize = 128 # latent size of Vision
msize = 128 # size of Memory
asize = 3 # action size
rnn_hunits = 256
ctrl_hidden_dims = 512
log_interval = 5000
save_interval = 10000
use_binary_feature = False
score_cut = 300 # to save
save_start_score = 100
# Rollout
max_ep = 1000
n_rollout = 200
seed = 0
n_workers = 0
class RNNHyperParams:
vision = 'VAE'
memory = 'RNN'
extra = False
data_dir = 'datasets'
extra_dir = 'additional'
ckpt_dir = 'ckpt'
img_height = 96
img_width = 96
img_channels = 3
batch_size = 1 # actually batchsize * Seqlen
test_batch = 1
seq_len = 32
n_sample = 64
vsize = 128 # latent size of Vision
msize = 128 # size of Memory
asize = 3 # action size
rnn_hunits = 256
log_interval = 1000
save_interval = 2000
max_step = 100000
n_workers = 0
class VAEHyperParams:
vision = 'VAE'
extra = False
data_dir = 'datasets'
extra_dir = 'additional'
ckpt_dir = 'ckpt'
img_height = 96
img_width = 96
img_channels = 3
batch_size = 64 #
test_batch = 12
n_sample = 64
vsize = 128 # latent size of Vision
msize = 128 # size of Memory
asize = 3 # action size
log_interval = 5000
save_interval = 10000
max_step = 2000000
n_workers = 0