-
Notifications
You must be signed in to change notification settings - Fork 0
/
toolbox.py
488 lines (407 loc) · 19.2 KB
/
toolbox.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
# General
import os
import sys
import shutil
import posixpath
import warnings
import importlib
from IPython.core.display import display, HTML
display(HTML("<style>.container { width:100% !important; }</style>"))
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' # Hide tensorflow warnings.
warnings.simplefilter('ignore')
# SciPy
import matplotlib.pyplot as plt
from matplotlib.ticker import LinearLocator, FormatStrFormatter
from matplotlib.gridspec import GridSpec
import numpy as np
import scipy.stats as stats
from scipy.signal import periodogram, butter, filtfilt
from sklearn.neighbors import KernelDensity
# Gpflow & tensorflow
import tensorflow as tf
from tensorflow_probability import distributions as tfd
import gpflow
f64 = gpflow.utilities.to_default_float
from gpflow.kernels import *
# Files
import csv
import pandas as pd
import seaborn as sns
import wfdb
from scipy.io import loadmat
# Local scripts
#sys.path.insert(0, '/home/david/Documenten/Courses/Spectral Discontinuity Design/Thesis AI/Implementation/')
from SpectralMixture import SpectralMixture, initialize_from_emp_spec, SpectralMixtureComponent
from bnqdflow import models, base, effect_size_measures, util, analyses
# """
# - Parts of the code inspired by: https://gpflow.readthedocs.io/en/stable/notebooks/regression.html
# - Plot of data & noisy observations taken from BNQD:
# """
def find_optimal_Q(x, y, data, min_Q, max_Q, fs=1., added_kernel = None, plot_BIC=True):
"""
Determine the optimal number of spectral components according to the Bayesain Information Criterion
BIC = log likelihood - k/2 * log(n)
:param x: NumpPy array (n,) input x values
:param y: NumPy array (n,) data y values
:param data: GPRegression datatype.
:param Qs: range of values for which a SM kernel will be intialized with Q components
:param fs: sampling rate
:plot_BIC: Bool: plots the BIC scores if true
return number of components Q that
"""
Qs= np.arange(min_Q, max_Q)
BIC = np.zeros((Qs.shape[0]))
for i, q in enumerate(Qs):
sm = SpectralMixture(q, x=x.flatten(),y=y.flatten(),fs=fs)
for k in sm.kernels:
if isinstance(k, SpectralMixtureComponent):
k.lengthscale.prior = tfd.Gamma(f64(8.), f64(.6))
k.mixture_weight.prior = tfd.Gamma(f64(2.), f64(1.))
if added_kernel is not None:
sm += added_kernel
# model = models.ContinuousModel(sm, (util.ensure_tf_matrix(x),util.ensure_tf_matrix(y)))
model = models.ContinuousModel(sm, data)
model.train(verbose=False)
BIC[i] = model.log_posterior_density("bic").numpy()
if plot_BIC:
fig = plt.figure()
plt.plot(Qs, BIC)
plt.xlabel('Number of Spectral Mixture components (Q)')
plt.show()
return np.argmax(BIC) + min_Q
def BIC_scores(X, Y,min_Q=1, max_Q=10, max_freq=1.0, max_length=1.0):
BIC_scores = np.zeros((max_Q-min_Q))
for q in range(min_Q, max_Q):
sm = SpectralMixture(Q=q, max_freq=max_freq, max_length=max_length)
m = models.ContinuousModel(sm, (util.ensure_tf_matrix(X),util.ensure_tf_matrix(Y)))
m.train(verbose=False)
log_marginal_likelihood = m.log_posterior_density("bic").numpy()
BIC_scores[q-min_Q] = log_marginal_likelihood
# print(f'Q: {q}',np.round(log_marginal_likelihood,3), 'BIC: ',np.round(BIC_scores[q-min_Q] ,3) )
return BIC_scores
def gaussian_density(x, weight, var, mean, log=True):
"""
Gaussian probability density
:param weight:
:param var: variance, sigma^2
:param mean:
:return: 1/sqrt(2 pi var) * exp{-(x-mu)^2/2}
"""
exp_term = np.exp(- (np.power ((x - mean)/var, 2.) /2))
normalization_term = 1 / ( np.sqrt(2.*np.pi*var))
log_gaussian = -np.log(np.sqrt(np.pi)) - np.log(var) - (x-mean)**2 / (2*var)
return weight * exp_term * normalization_term, log_gaussian
#---------------------------
# Effect size measurements
#---------------------------
def EffectSizeGMM(analysis, mode='absolute difference'):
"""
Effect size for the Spectral Mixture kernel
:param analysis: BNQDflow analysis object
:param mode: effect size measure. Currently supports 'difference in means' and 'kullback leibler'
:return: effect size \Sum_{i=0}^{N} (mu_{i,c} - mu_{i,d})
"""
ControlSM = analysis.discontinuous_model.models[0].kernel.kernels
InterventionSM = analysis.discontinuous_model.models[1].kernel.kernels
Q = len(ControlSM)
weights, means, sigmas = [np.zeros((2,Q)) for i in range(3)]
for i, kernel in enumerate([ControlSM, InterventionSM]):
for j in range(Q):
weights[i, j] = kernel[j].mixture_weight.numpy()
means[i, j] = kernel[j].frequency.numpy()
sigmas[i, j] = 1 / np.sqrt(kernel[j].lengthscale.numpy())
if mode == 'absolute difference':
return DifferenceInMeans(weights, means, sigmas)
elif mode == 'KullbackLeibler':
return EffectSizeKullbackLeibler(weights, means, sigmas)
elif mode == 'means and weights':
return DifferenceInMeans(weights, means, sigmas) + DifferenceInWeights(weights)
else:
raise ValueError("Effect size measure is misspecified.")
def DifferenceInMeans(weights, means, sigmas, average_delta = True):
"""
Effect size as the difference in means, weight and standard deviations between two Gaussian Mixture Models.
:arg weights (2, Q) where the first index is the control group
:arg means: (2, Q) where the first index is the control group
:arg sigmas: (2, Q) where the first index is the control group
:return float : Scaled difference in means, weight and standard deviations between the Control and Intervention spectral mixtures.
"""
Q = len(means)
delta = 0
# Sort on frequency
means.sort()
# Multiply absolute difference in frequ
for i in range(Q):
delta += (np.abs((means[0,i])-(means[1,i]))
+ np.abs((weights[0,i])-(weights[1,i]))
+ np.abs((sigmas[0,i])-(sigmas[1,i])))
#print('delta: ',delta, ' Q: ', Q)
if average_delta:
delta = delta/Q
return delta
def EffectSizeKullbackLeibler(weights, means, sigmas):
"""
Effect size according to the approximated Kullback-Leibler divergence for two univariate Gaussian Mixture Models.
For each pair of Gaussians, the effect size as approximated as:
D(m1||m2) = KL(m1||m2) = sum_Q argmin_j
where KL(p|q) = log (sigma_1/sigma_2) + (sigma_1^2 +(mu_1 - mu_2)^2 )/ 2 sigma_2^2 - 1/2
:arg weights, array of (Q,)
:arg means, array of (Q,)
:arg sigmas, array of (Q,)
:return float : approximated Kullback-Leibler divergence between Mixture1 and Mixture2.
"""
kl = 0
Q = len(weights)
# Normalize weights
sum_weights = np.sum(weights)
weights = weights / sum_weights
# Pair each component in the control group to the closest component in the intervention group
for i in range(Q):
m1, s1, w1 = means[0,i] , sigmas[0,i], weights[0,i]
kl_scores = np.zeros((Q))
for j in range(len(weights)):
m2, s2, w2 = means[1,j], sigmas[1,j], weights[1,j]
kl_univariate = KullbackLeiblerUnivariateGaussian(m1,m2,s1,s2)
kl_scores[j] = kl_univariate + np.log(w1/w2)
kl += w1 * kl_scores.min()
return kl
def KullbackLeiblerUnivariateGaussian(m1, m2, s1, s2):
"""
:param m1, m2 : means
:param s1, s2: standard deviation
:return: KL divergence for univariate gaussian
KL(p||q) = log (sigma_1/sigma_2) + (sigma_1^2 +(mu_1 - mu_2)^2 )/ 2 sigma_2^2 - 1/2
"""
return np.log(s2/s1) +(s1**2 + (m1-m2)**2)/(2*s2**2) - 0.5
def DifferenceInWeights(weights, average_delta = True):
Q = len(weights)
delta = 0
for i in range(Q):
delta += np.abs((weights[0, i]) - (weights[1, i]))
#print('delta: ', delta, ' Q: ', Q)
if average_delta:
delta = delta / Q
return delta
#---------------------------
# Functions for generating synthetic data sets
#---------------------------
def mean_function(x):
"""
f(x) = sin(12x) + (2/3)*cos(25x)
"""
return np.sin(12*x) + 0.66*np.cos(25*x) # original frequencies: 12, 25
def shifting_discontinuity_mean_function(x, d=0):
"""
f(x) = sin((12+d) x) + (2/3)cos((25+d) x) where forall x>0, d=0
:arg d: order of discontinuity in frequency
"""
return (x<=0)*np.sin(12*x) + (x>0)*np.sin((12+d)*x)+ (x<=0)*0.66*np.cos(25*x) + (x>0)*0.66*np.cos((25+d)*x)
def diverging_discontinuity_mean_function(x, d=0):
"""
f(x) = sin((12-d)x) + (2/3)cos((25+d)x) where forall x>0, d=0
:arg d: order of discontinuity in frequency
"""
return (x<=0)*np.sin(12*x) + (x>0)*np.sin((12-d)*x)+ (x<=0)*0.66*np.cos(25*x) + (x>0)*0.66*np.cos((25+d)*x)
def weight_discontinuity_mean_function(x, d=0):
"""
f(x) = sin(12x)/d + (2*d/3)cos(25x) where forall x>0, d=0
:arg d: order of discontinuity in weight
"""
return (x <= 0) * np.sin(12 * x) + (x > 0) *(1/d)* np.sin(12* x) + (x <= 0) * 0.66 * np.cos(25 * x) + (
x > 0) * (0.66*d) * np.cos(25*x)
def sinc_mean_function(x):
"""
f(x) = (sin(24x) / 12x) + 2
"""
return np.sin(24*x ) / (12*x) + 2
def triple_trigonometry(x, d=0):
"""
f(x) = sin(5x) + cos(17x) + sin(28x)
:arg d: order of discontinuity
"""
return (np.cos(5*x) +np.cos(17*x) + np.cos(28*x))*(x<=0) + (np.cos((5+d)*x) +np.cos((17+d)*x) + np.cos((28+d)*x))*(x>0)
#---------------------------
# Plotting functionality
#---------------------------
# def plot_prediction(X, Y, xx, mean, var, samples=None, ax=None, name=None, b=None, mu = None, ylim=None, lineplot=False):
# """
# Standard time series plot of the observations and the model fit.
# :param X: observation X-values
# :param Y: obsrvation Y-values
# :param xx: NumPy linspace object for predictions
# :param mean: posterior model mean
# :param var: posterior model variance
# """
# if ax == None:
# ax = plt.gca()
# if name == None:
# name = "undefined"
# if lineplot:
# ax.plot(X,Y,color='black')
# else:
# ax.plot(X, Y, 'kx',mew=2,label='Observations')
# ax.plot(xx, mean, 'C0',linewidth=2.0,label='Posterior mean')
# ax.fill_between(xx[:, 0],
# mean[:, 0] - 1.96 * np.sqrt(var[:, 0]),
# mean[:, 0] + 1.96 * np.sqrt(var[:, 0]),
# color='C0', alpha=0.15)#'C0'
# ax.xaxis.set_major_locator(LinearLocator(4))
# ax.yaxis.set_major_locator(LinearLocator(2))
# ax.xaxis.set_major_formatter(FormatStrFormatter('%.0f'))
# ax.yaxis.set_major_formatter(FormatStrFormatter('%.0f'))
# ax.set_title("Posterior of " + name + " kernel", fontsize=25)
# ax.set_ylim(-3,3)
# if samples is not None:
# ax.plot(xx, samples[:, :, 0].numpy().T, 'C0', linewidth=.5)
# if mu is not None:
# ax.plot(xx, mu, label='True function', linewidth=2.0, color='black')
# if b is not None:
# ax.axvline(x=b, color='black', linestyle=':')
# ax.legend(loc='upper right')
# #ax.set_title("Posterior prediction using the " + name + " kernel")
# if ylim != None:
# ax.set_ylim(ylim[0], ylim[1])
def plot_kernel_spectrum(spectral_mixture, max_x=1.1, title=None, ax=None, colours=None, true_freqs=None,
two_pi=False, scalar=1.):
"""
Plot the estimated spectral density for the Spectral Mixture kernel
:param spectral_mixture: spectra mixture kernel
"""
Q = np.sum([isinstance(kernel, SpectralMixtureComponent) for kernel in spectral_mixture.kernels])
if ax is None:
ax = plt.gca()
weights, means, variances = [], [], []
for i in range(Q):
weights.append(spectral_mixture.kernels[i].mixture_weight.numpy())
if two_pi:
means.append((spectral_mixture.kernels[i].frequency.numpy() / (2 * np.pi)) * scalar)
else:
means.append((spectral_mixture.kernels[i].frequency.numpy()) * scalar )
variances.append(1 / np.sqrt(spectral_mixture.kernels[i].lengthscale.numpy() ))#* (1 / scalar)
# print('Trained value lengthscale ', spectral_mixture.kernels[i].lengthscale.numpy())
# print('Scaled value', np.sqrt(spectral_mixture.kernels[i].lengthscale.numpy() * (1/scalar)))
# print('final variance: ', 1 / np.sqrt(spectral_mixture.kernels[i].lengthscale.numpy() * (1/scalar)))
# weights = np.log(weights)
# vars = np.log(vars)
pdfs = plot_freq_GMM(weights, means, variances, title=title, max_x=max_x, ax=ax, colours=colours, true_freqs=true_freqs)
return pdfs
def plot_freq_GMM(weights, means, variances, title=None, max_x=1.1, ax=None, colours=None, true_freqs=None):
if ax is None:
ax = plt.gca()
x = np.linspace(0, max_x, int(max_x * 1000)).reshape(int(max_x * 1000), 1)
max_val = 0
pdfs = []
for i in range(len(weights)):
pdf, log_pdf = gaussian_density(x, weights[i], variances[i], means[i])
pdfs.append(pdf)
if max(pdf) > max_val:
max_val = max(pdf)
if colours is not None:
ax.plot(x, pdf, linewidth=2.0, color=colours[i % 6], rasterized=True)
ax.fill_between(x.flatten(), 0, pdf.flatten(), alpha=0.35, color=colours[i % 6], rasterized=True)
else:
ax.plot(x, pdf, linewidth=2.0, rasterized=True)
ax.fill_between(x.flatten(), 0, pdf.flatten(), alpha=0.25, rasterized=True)
if true_freqs is not None:
for i, freq in enumerate(true_freqs):
if i is 0:
ax.axvline(x=freq, color='black', linestyle=':', label='True frequencies')
else:
ax.axvline(x=freq, color='black', linestyle=':')
ax.set_xlabel("Frequency") # , fontsize=16)
ax.set_ylabel("Spectral Density") # ,fontsize=16)
if title is not None:
ax.set_title(title, fontsize=25)
ax.set_ylim(0, max_val + 0.5 * max_val)
ax.set_xlim(0, max_x) # 30
return np.array(pdfs)
# ax.legend()
def plot_model_spectra(a, Q, d, ax, index, max_x=2.5, padding=0.0, true_freqs=None, ylim=None, scalar=1.0):
"""
Plots several model spectra for various discontinuity sizes
"""
# colour palettes
greys = ['#393939', '#575757', '#707070', '#898989', '#a4a4a4', '#bfbfbf']
blues = ['#367bac', '#3787c0', '#4892c6', '#69a6d0', '#8abbdb', '#95c1de']
greens = ['#265e52', '#3c7e69', '#599d7e', '#79b895', '#9ed0ae', '#c6e5cc']
sns.set(style='ticks')
cm = a.continuous_model.model
dcm = a.discontinuous_model.control_model
dim = a.discontinuous_model.intervention_model
# fig = plt.figure(constrained_layout=True,figsize=(12,15))
# # Continuous spectral GMM
# gs = GridSpec(3, 1, figure=fig)
# ax1 = fig.add_subplot(gs[0,index])
continuous_pdfs = plot_kernel_spectrum(Q, cm.kernel, max_x, ax=ax[0], colours=greys, true_freqs=None, scalar=scalar)
# Discontinuous-control spectral GMM
# ax2 = fig.add_subplot(gs[1,index])
if true_freqs is not None:
control_pdfs = plot_kernel_spectrum(Q, dcm.kernel, max_x, ax=ax[1], colours=blues, true_freqs=true_freqs[0], scalar=scalar)
# Discontinuous-intervention spectral GMM
intervention_pdfs = plot_kernel_spectrum(Q, dim.kernel, max_x, ax=ax[2], colours=greens, true_freqs=true_freqs[1], scalar=scalar)
else:
plot_kernel_spectrum(Q, dcm.kernel, max_x, ax=ax[1], colours=blues, true_freqs=None, scalar=scalar)
# Discontinuous-intervention spectral GMM
plot_kernel_spectrum(Q, dim.kernel, max_x, ax=ax[2], colours=greens, true_freqs=None, scalar=scalar)
# return fig, gs
# fig.suptitle(f"$d$ = {d}",size=30)
# fig.tight_layout()
# fig.subplots_adjust(top=0.9)
def plot_posterior_model_spectrum(a, max_x=2.5, padding=0.0, true_freqs=None, ylim=None, lineplot=False, scalar=1.0,
xticks=None, yticks=None, num_samples = 1000, num_f_samples=0, predict_y=False):
"""
Plots a 4x4 subfigure, which covers the continuous fit on data, continuous GMM spectrum, discontinuous regression, and discontinuous GMM
:arg
a : BNQDflow analysis
Q : number of components in Spectral Mixture Kernel
cm : BNQDflow continuous model
dcm : BNQDFlow discontinuous control model
cim : BNQDflow discontinuous intervention model
max_x: float - maximum range of x axis on spctral GMM plots.
"""
sns.set(style='ticks')
cm = a.continuous_model.model
dcm = a.discontinuous_model.control_model
dim = a.discontinuous_model.intervention_model
fig = plt.figure(constrained_layout=True, figsize=(24, 15))
gs = GridSpec(8, 3, figure=fig)
ax1 = fig.add_subplot(gs[:4, :-1]) # Continuous model fit
ax1.set_title('Continuous model fit', fontsize=30.) # , x=0.75, y=1.02)
ax2 = fig.add_subplot(gs[1:3, -1]) # Continuous spectral GMM
ax3 = fig.add_subplot(gs[4:, :-1]) # Discontinuous model fit
ax3.set_title('Discontinuous model fit', fontsize=30.0) # , x=0.75, y=1.02)
ax4 = fig.add_subplot(gs[4:6, -1]) # Discontinuous-control spectral GMM
ax5 = fig.add_subplot(gs[6:, -1]) # Discontinuous-intervention spectral GMM
# colour palettes
greys = ['#393939', '#575757', '#707070', '#898989', '#a4a4a4', '#bfbfbf']
blues = ['#367bac', '#3787c0', '#4892c6', '#69a6d0', '#8abbdb', '#95c1de']
greens = ['#265e52', '#3c7e69', '#599d7e', '#79b895', '#9ed0ae', '#c6e5cc']
a.continuous_model.plot_regression(ax=ax1, n_samples=num_samples, num_f_samples=num_f_samples, padding=padding, ylim=ylim,
lineplot=lineplot, predict_y=predict_y)
continuous_pdfs = plot_kernel_spectrum(cm.kernel, max_x, title="Continuous spectral density", ax=ax2, colours=greys,
true_freqs=None, scalar=scalar)
#np.save('continuous_pdfs',continuous_pdfs)
f_samples_list = a.discontinuous_model.plot_regression(ax=ax3, n_samples=1000, num_f_samples=num_f_samples, padding=padding, ylim=ylim,lineplot=lineplot, predict_y=predict_y)
if xticks is not None:
ax1.set_xticklabels(xticks)
ax3.set_xticklabels(xticks)
if yticks is not None:
ax1.set_yticklabels(yticks)
ax3.set_yticklabels(yticks)
if true_freqs is not None:
control_pdfs=plot_kernel_spectrum(dcm.kernel, max_x, ax=ax4, title="Spectral density of the control group", colours=blues,
true_freqs=true_freqs[0], scalar=scalar)
intervention_pdfs=plot_kernel_spectrum(dim.kernel, max_x, ax=ax5, title="Spectral density of the intervention group",
colours=greens, true_freqs=true_freqs[1], scalar=scalar)
#np.save('control_pdfs', control_pdfs)
#np.save('intervention_pdfs', intervention_pdfs)
else:
control_pdfs = plot_kernel_spectrum(dcm.kernel, max_x, ax=ax4, title="Control spectral density", colours=blues,
scalar=scalar)
intervention_pdfs=plot_kernel_spectrum(dim.kernel, max_x, ax=ax5, title="Intervention spectral density", colours=greens,
scalar=scalar)
#np.save('control_pdfs', control_pdfs)
#np.save('intervention_pdfs', intervention_pdfs)
fig.tight_layout()
fig.subplots_adjust(top=0.9)
return f_samples_list