forked from StrawberryCheesecake/image_recog
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinput_loader.py
188 lines (131 loc) · 6.26 KB
/
input_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import tensorflow as tf
# from tensorflow.python.platform import tf_logging as logging
import image_preprocessing
from nets import inception
import os
os.environ['TF_CPP_MIN_LOG_LEVEL']='2'
import time
slim = tf.contrib.slim
# ============== Dataset Setup ============== #
# State the number of classes to predict
num_classes = 2
# State the lables file and read it
labels_file = './images/labels.txt'
labels = open(labels_file, 'r')
# Create a dictionary to refer to each label to its string name
labels_to_name = {}
for line in labels:
label, string_name = line.split(':')
string_name = string_name[:-1] # Get rid of the newline
labels_to_name[int(label)] = string_name
# create the file pattern for each tf record
file_pattern = 'seatbelt_%s_*.tfrecord'
# Dictionary to keep track of variables, for dataset comprehention
items_to_descriptions = {
'image': 'A 3-channel RGB coloured image of a seatbelt in some capacity.',
'label': 'A label that is of this format -- 0:seatbelt, 1:no_seatbelt, etc.'
}
# A GPU with 3.5GB memory could only do a max of 10 examples per batch
# So I should try like.... 2? 3?
# ============== Training Info ============== #
# State the number of epochs to train
num_epochs = 70
# State the batch size
batch_size = 3
# Learning rate information
# These are Hyperparameters, so they'll need tweaking as we train
initial_learning_rate = 0.0002
learning_rate_decay_factor = 0.7
num_epochs_before_decay = 2
# Function for getting a split of our data set- either training or validation - from our dataset_dir
# Read in files following the file pattern
def get_split(split_name, dataset_dir, file_pattern=file_pattern):
"""
Inputs:
split_name (str) : 'train' or 'validation' for whichever split you want
dataset_dir (str) : directory your TFRecords are located in
file_pattern (str) : string that'll pattern match to the TFRecord filenames
Outputs:
dataset (Dataset) : a Dataset class object where we can read its different components for easy batch creation
"""
# Argument validation
if split_name not in ['train', 'validation']:
raise ValueError("The split name %s is not recognized. Enter either 'training' or 'validation'." % (split_name))
# Create the full paht for a general file pattern to locate the tfrecord files
file_pattern_path = os.path.join(dataset_dir, file_pattern % (split_name))
# Count the total number of examples in all of these shards
# We can hardcode this step if we just 'know' the format of our TFRecord files
num_samples = 0
file_pattern_for_counting = 'seatbelt_' + split_name
tfrecords_to_count = [os.path.join(dataset_dir, file) for file in os.listdir(dataset_dir)\
if file.startswith(file_pattern_for_counting)]
# Iterate through all the encoded images in the TFRecord file and increment the counter for each
for tfrecord_file in tfrecords_to_count:
for record in tf.python_io.tf_record_iterator(tfrecord_file):
num_samples += 1
# Create a file reader, which must be a TFRecord reader in this case
reader = tf.TFRecordReader
# Create the keys_to_features dictionary for the decoder
keys_to_features = {
'image/encoded' : tf.FixedLenFeature((), tf.string, default_value=''),
'image/format' : tf.FixedLenFeature((), tf.string, default_value='jpg'),
'image/class/label' : tf.FixedLenFeature([], tf.int64, default_value=tf.zeros([], dtype=tf.int64))
}
# Create the items_to_handlers dictionary for the decoder
items_to_handlers = {
'image': slim.tfexample_decoder.Image(),
'label': slim.tfexample_decoder.Tensor('image/class/label')
}
# Create the decoder
decoder = slim.tfexample_decoder.TFExampleDecoder(keys_to_features, items_to_handlers)
# Create the dataset object
dataset = slim.dataset.Dataset(
data_sources = file_pattern_path,
decoder = decoder,
reader = reader,
num_readers = 4,
num_samples = num_samples,
num_classes = num_classes,
labels_to_names = labels_to_name,
items_to_descriptions = items_to_descriptions
)
return dataset
def load_batch(dataset, batch_size, height, width, is_training=True):
"""
Input:
dataset (Dataset) : a Dataset class object we create in out get_split funciton
batch_size (int) : self-explanatory
height (int) : height of the image to resize to during preprocessing
width (int) : width of the image to resize to during preprocessing
is_training (bool) : determine whether to perform training or validation pre-processing
Output:
images (Tensor) : a Tensor of the shape [batch_size, height, width, channels] corresponding to one batch of images
labels (Tensor) : a Tensor of the shape (batch_size,) that contains the corresponding labels to the images
"""
# Create the data_provider object, where much of the format encoding went into the dataset object
data_provider = slim.dataset_data_provider.DatasetDataProvider(
dataset,
common_queue_capacity = 24 + 3 * batch_size,
common_queue_min = 24
)
# Obtain our tensors from the dataprovider
raw_image, label = data_provider.get(['image', 'label'])
# Perform the correct preprocessing for the image
# I'd insert my own preprocessing script here
image = image_preprocessing.preprocess_image(raw_image, height, width)
# Preprocess the image for display purposes.
raw_image = tf.expand_dims(raw_image, 0)
raw_image = tf.image.resize_images(raw_image, [height, width])
raw_image = tf.squeeze(raw_image)
# The dude still reshapes the raw image and keeps a reference to it so we can look at it properly if we need to during training
# A resounding "meh" from me
# Batch up the image by enqueuing the tensors internally into a FIFO queue
# eventually dequeue many individual elements in tf.train.batch
images, raw_image, labels = tf.train.batch(
[image, raw_image, label],
batch_size = batch_size,
num_threads = 4,
capacity = 4 * batch_size,
allow_smaller_final_batch = True
)
return images, raw_image, labels