diff --git a/changelog/402.feature.rst b/changelog/402.feature.rst new file mode 100644 index 00000000..6a85791b --- /dev/null +++ b/changelog/402.feature.rst @@ -0,0 +1,4 @@ +Add various features for easier inspection of `TiledDataset`: +- `__repr__` method to output basic dataset info; +- `tiles_shape` property to access data array shape for each individual tile; +- `slice_tiles()` method to apply the same slice to all datasets. diff --git a/dkist/conftest.py b/dkist/conftest.py index 36c5ea94..e77213a4 100644 --- a/dkist/conftest.py +++ b/dkist/conftest.py @@ -282,6 +282,15 @@ def simple_tiled_dataset(dataset): return TiledDataset(dataset_array, dataset.meta["inventory"]) +@pytest.fixture +def large_tiled_dataset(tmp_path_factory): + vbidir = tmp_path_factory.mktemp("data") + with gzip.open(Path(rootdir) / "large_vbi.asdf.gz", mode="rb") as gfo: + with open(vbidir / "test_vbi.asdf", mode="wb") as afo: + afo.write(gfo.read()) + return load_dataset(vbidir / "test_vbi.asdf") + + @pytest.fixture def small_visp_dataset(): """ diff --git a/dkist/data/test/large_vbi.asdf.gz b/dkist/data/test/large_vbi.asdf.gz new file mode 100644 index 00000000..5146482c Binary files /dev/null and b/dkist/data/test/large_vbi.asdf.gz differ diff --git a/dkist/dataset/tests/test_tiled_dataset.py b/dkist/dataset/tests/test_tiled_dataset.py index e6ed68b6..ac1485b5 100644 --- a/dkist/dataset/tests/test_tiled_dataset.py +++ b/dkist/dataset/tests/test_tiled_dataset.py @@ -28,6 +28,14 @@ def test_tiled_dataset_slice(simple_tiled_dataset, aslice): assert np.all(simple_tiled_dataset[aslice] == simple_tiled_dataset._data[aslice]) +@pytest.mark.parametrize("aslice", [np.s_[0, :100, 100:200]]) +def test_tiled_dataset_slice_tiles(large_tiled_dataset, aslice): + sliced = large_tiled_dataset.slice_tiles[aslice] + for i, tile in enumerate(sliced.flat): + # This will throw an AttributeError if you do tile.shape and I don't know why + assert tile.data.shape == (100, 100) + + def test_tiled_dataset_headers(simple_tiled_dataset, dataset): assert len(simple_tiled_dataset.combined_headers) == len(dataset.meta["headers"]) * 4 assert simple_tiled_dataset.combined_headers.colnames == dataset.meta["headers"].colnames @@ -75,3 +83,11 @@ def test_tileddataset_plot(share_zscale): fig = plt.figure(figsize=(600, 800)) ds.plot(0, share_zscale=share_zscale) return plt.gcf() + +def test_repr(simple_tiled_dataset): + r = repr(simple_tiled_dataset) + assert str(simple_tiled_dataset[0, 0].data) in r + + +def test_tiles_shape(simple_tiled_dataset): + assert simple_tiled_dataset.tiles_shape == [[tile.data.shape for tile in row] for row in simple_tiled_dataset] diff --git a/dkist/dataset/tiled_dataset.py b/dkist/dataset/tiled_dataset.py index c4aad0e5..f63cfc44 100644 --- a/dkist/dataset/tiled_dataset.py +++ b/dkist/dataset/tiled_dataset.py @@ -5,6 +5,7 @@ but not representable in a single NDCube derived object as the array data are not contiguous in the spatial dimensions (due to overlaps and offsets). """ +from textwrap import dedent from collections.abc import Collection import matplotlib.pyplot as plt @@ -13,10 +14,26 @@ from astropy.table import vstack from .dataset import Dataset +from .utils import dataset_info_str __all__ = ["TiledDataset"] +class TiledDatasetSlicer: + """ + Basic class to provide the slicing + """ + def __init__(self, data, inventory): + self.data = data + self.inventory = inventory + + def __getitem__(self, slice_): + new_data = [] + for tile in self.data.flat: + new_data.append(tile[slice_]) + return TiledDataset(np.array(new_data).reshape(self.data.shape), self.inventory) + + class TiledDataset(Collection): """ Holds a grid of `.Dataset` objects. @@ -125,6 +142,13 @@ def shape(self): """ return self._data.shape + @property + def tiles_shape(self): + """ + The shape of each individual tile in the TiledDataset. + """ + return [[tile.data.shape for tile in row] for row in self] + def plot(self, slice_index: int, share_zscale=False, **kwargs): vmin, vmax = np.inf, 0 fig = plt.figure() @@ -151,4 +175,18 @@ def plot(self, slice_index: int, share_zscale=False, **kwargs): fig.suptitle(f"{self.inventory['instrumentName']} Dataset ({self.inventory['datasetId']}) at time {timestamp} (slice={slice_index})", y=0.95) return fig + @property + def slice_tiles(self): + return TiledDatasetSlicer(self._data, self.inventory) + # TODO: def regrid() + + def __repr__(self): + """ + Overload the NDData repr because it does not play nice with the dask delayed io. + """ + prefix = object.__repr__(self) + return dedent(f"{prefix}\n{self.__str__()}") + + def __str__(self): + return dataset_info_str(self) diff --git a/dkist/dataset/utils.py b/dkist/dataset/utils.py index bd29f20c..c2c6be6a 100644 --- a/dkist/dataset/utils.py +++ b/dkist/dataset/utils.py @@ -10,15 +10,26 @@ def dataset_info_str(ds): + # Check for an attribute that only appears on TiledDataset + # Not using isinstance to avoid circular import + is_tiled = hasattr(ds, "combined_headers") + dstype = type(ds).__name__ + if is_tiled: + tile_shape = ds.shape + ds = ds[0, 0] wcs = ds.wcs.low_level_wcs # Pixel dimensions table - instr = ds.meta.get("instrument_name", "") + instr = ds.inventory.get("instrument", "") if instr: instr += " " - s = f"This {instr}Dataset has {wcs.pixel_n_dim} pixel and {wcs.world_n_dim} world dimensions\n\n" + if is_tiled: + s = f"This {dstype} consists of an array of {tile_shape} Dataset objects\n\n" + s += f"Each {instr}Dataset has {wcs.pixel_n_dim} pixel and {wcs.world_n_dim} world dimensions\n\n" + else: + s = f"This {instr}Dataset has {wcs.pixel_n_dim} pixel and {wcs.world_n_dim} world dimensions\n\n" s += f"{ds.data}\n\n" array_shape = wcs.array_shape or (0,)