-
Notifications
You must be signed in to change notification settings - Fork 0
/
trt_yolo.py
executable file
·130 lines (108 loc) · 4.52 KB
/
trt_yolo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
"""trt_yolo.py
This script demonstrates how to do real-time object detection with
TensorRT optimized YOLO engine.
"""
import os
import time
import argparse
import cv2
import pycuda.autoinit # This is needed for initializing CUDA driver
#import local classes and their functions
from utils.yolo_classes import get_cls_dict
from utils.camera import add_camera_args, Camera
from utils.display import open_window, set_display, show_fps
from utils.visualization import BBoxVisualization
from utils.yolo_with_plugins import TrtYOLO
WINDOW_NAME = 'TrtYOLODemo'
def parse_args():
"""Parse input arguments."""
desc = ('Capture and display live camera video, while doing '
'real-time object detection with TensorRT optimized '
'YOLO model on Jetson')
parser = argparse.ArgumentParser(description=desc)
parser = add_camera_args(parser)
parser.add_argument(
'-c', '--category_num', type=int, default=80,
help='number of object categories [80]')
parser.add_argument(
'-m', '--model', type=str, required=True,
help=('[yolov3-tiny|yolov3|yolov3-spp|yolov4-tiny|yolov4|'
'yolov4-csp|yolov4x-mish]-[{dimension}], where '
'{dimension} could be either a single number (e.g. '
'288, 416, 608) or 2 numbers, WxH (e.g. 416x256)'))
parser.add_argument(
'-l', '--letter_box', action='store_true',
help='inference with letterboxed image [False]')
args = parser.parse_args()
return args
def loop_and_detect(cam, trt_yolo, conf_th, vis):
"""Continuously capture images from camera and do object detection.
# Arguments
cam: the camera instance (video source).
trt_yolo: the TRT YOLO object detector instance.
conf_th: confidence/score threshold for object detection.
vis: for visualization.
"""
#full_screen is set to false by default
full_scrn = False
#fps is set at 0 by default
fps = 0.0
#create time variable for measuring the frames per second in real time
tic = time.time()
#while loop to perform inference
while True:
#determine if window is closed or not ????
#break the loop if window is closed
if cv2.getWindowProperty(WINDOW_NAME, 0) < 0:
break
#create img object from a reading of the camera frame
img = cam.read()
#break loop if the camera frame is none
if img is None:
break
#create bounding box coordinate, detection confidence, and class id from the detect function of the trt_yolo object.
boxes, confs, clss = trt_yolo.detect(img, conf_th)
img = vis.draw_bboxes(img, boxes, confs, clss)
img = show_fps(img, fps)
cv2.imshow(WINDOW_NAME, img)
toc = time.time()
curr_fps = 1.0 / (toc - tic)
# calculate an exponentially decaying average of fps number
fps = curr_fps if fps == 0.0 else (fps*0.95 + curr_fps*0.05)
tic = toc
key = cv2.waitKey(1)
if key == 27: # ESC key: quit program
break
elif key == ord('F') or key == ord('f'): # Toggle fullscreen
full_scrn = not full_scrn
set_display(WINDOW_NAME, full_scrn)
def main():
#parse arguments
args = parse_args()
#raise errors for lack of arguments, such as the category number and the model file
if args.category_num <= 0:
raise SystemExit('ERROR: bad category_num (%d)!' % args.category_num)
if not os.path.isfile('yolo/%s.trt' % args.model):
raise SystemExit('ERROR: file (yolo/%s.trt) not found!' % args.model)
#camera object instantiated with arguments
cam = Camera(args)
#raise error if cameras is not opened
if not cam.isOpened():
raise SystemExit('ERROR: failed to open camera!')
#create list of classes to be detected
cls_dict = get_cls_dict(args.category_num)
#instantiate vis object with class_dict passed as an argument
#BBOXVisualization contains code to draw boxes and assign colors to each class
vis = BBoxVisualization(cls_dict)
#instantiate the TtrYOLO object based on the arguments given in the command to start trt_yolo.py
trt_yolo = TrtYOLO(args.model, args.category_num, args.letter_box)
#open a window based on camera height and width
open_window(
WINDOW_NAME, 'Camera TensorRT YOLO Demo',
cam.img_width, cam.img_height)
#loop and perform detections
loop_and_detect(cam, trt_yolo, conf_th=0.3, vis=vis)
cam.release()
cv2.destroyAllWindows()
if __name__ == '__main__':
main()