Skip to content

Latest commit

 

History

History
executable file
·
123 lines (101 loc) · 5.45 KB

README_x86.md

File metadata and controls

executable file
·
123 lines (101 loc) · 5.45 KB

Instructions for x86_64 platforms

All demos in this repository, with minor tweaks, should also work on x86_64 platforms with NVIDIA GPU(s). Here is a list of required modifications if you'd like to run the demos on an x86_64 PC/server.

Make sure you have TensorRT installed properly on your x86_64 system. You could follow NVIDIA's official Installation Guide :: NVIDIA Deep Learning TensorRT documentation.

Demo #1 (GoogLeNet) and #2 (MTCNN)

  1. Set TENSORRT_INCS and TENSORRT_LIBS in "common/Makefile.config" correctly for your x86_64 system. More specifically, you should find the following lines in "common/Mafefile.config" and modify them if needed.

    # These are the directories where I installed TensorRT on my x86_64 PC.
    TENSORRT_INCS=-I"/usr/local/TensorRT-7.1.3.4/include"
    TENSORRT_LIBS=-L"/usr/local/TensorRT-7.1.3.4/lib"
    
  2. Set library_dirs and include_dirs in "setup.py". More specifically, you should check and make sure the 2 TensorRT path lines are correct.

    library_dirs = [
        '/usr/local/cuda/lib64',
        '/usr/local/TensorRT-7.1.3.4/lib',  # for my x86_64 PC
        '/usr/local/lib',
    ]
    ......
    include_dirs = [
        # in case the following numpy include path does not work, you
        # could replace it manually with, say,
        # '-I/usr/local/lib/python3.6/dist-packages/numpy/core/include',
        '-I' + numpy.__path__[0] + '/core/include',
        '-I/usr/local/cuda/include',
        '-I/usr/local/TensorRT-7.1.3.4/include',  # for my x86_64 PC
        '-I/usr/local/include',
    ]
  3. Follow the steps in the original README.md, and the demos should work on x86_64 as well.

Demo #3 (SSD)

  1. Make sure to follow NVIDIA's official Installation Guide :: NVIDIA Deep Learning TensorRT documentation and pip3 install "tensorrt", "uff", and "graphsurgeon" packages.

  2. Patch /usr/local/lib/python3.?/dist-packages/graphsurgeon/node_manipulation.py by adding the following line (around line #42):

     def shape(node):
         ......
         node.name = name or node.name
         node.op = op or node.op or node.name
    +    node.attr["dtype"].type = 1
         for key, val in kwargs.items():
         ......
  3. (I think this step is only required for TensorRT 6 or earlier versions.) Re-build libflattenconcat.so from TensorRT's 'python/uff_ssd' sample source code. For example,

    $ mkdir -p ${HOME}/src/TensorRT-5.1.5.0
    $ cp -r /usr/local/TensorRT-5.1.5.0/samples ${HOME}/src/TensorRT-5.1.5.0
    $ cd ${HOME}/src/TensorRT-5.1.5.0/samples/python/uff_ssd
    $ mkdir build
    $ cd build
    $ cmake -D NVINFER_LIB=/usr/local/TensorRT-5.1.5.0/lib/libnvinfer.so \
            -D TRT_INCLUDE=/usr/local/TensorRT-5.1.5.0/include ..
    $ make
    $ cp libflattenconcat.so ${HOME}/project/tensorrt_demos/ssd/
  4. Install "pycuda".

    $ sudo apt-get install -y build-essential python-dev
    $ sudo apt-get install -y libboost-python-dev libboost-thread-dev
    $ sudo pip3 install setuptools
    $ export boost_pylib=$(basename /usr/lib/x86_64-linux-gnu/libboost_python3-py3?.so)
    $ export boost_pylibname=${boost_pylib%.so}
    $ export boost_pyname=${boost_pylibname/lib/}
    $ cd ${HOME}/src
    $ wget https://files.pythonhosted.org/packages/5e/3f/5658c38579b41866ba21ee1b5020b8225cec86fe717e4b1c5c972de0a33c/pycuda-2019.1.2.tar.gz
    $ tar xzvf pycuda-2019.1.2.tar.gz
    $ cd pycuda-2019.1.2
    $ ./configure.py --python-exe=/usr/bin/python3 \
                     --cuda-root=/usr/local/cuda \
                     --cudadrv-lib-dir=/usr/lib/x86_64-linux-gnu \
                     --boost-inc-dir=/usr/include \
                     --boost-lib-dir=/usr/lib/x86_64-linux-gnu \
                     --boost-python-libname=${boost_pyname} \
                     --boost-thread-libname=boost_thread \
                     --no-use-shipped-boost
    $ make -j4
    $ python3 setup.py build
    $ sudo python3 setup.py install
    $ python3 -c "import pycuda; print('pycuda version:', pycuda.VERSION)"
  5. Follow the steps in the original README.md but skip install.sh. You should be able to build the SSD TensorRT engines and run them on on x86_64 as well.

Demo #4 (YOLOv3) & Demo #5 (YOLOv4)

Checkout "plugins/Makefile". You'll need to make sure in "plugins/Makefile":

  • CUDA compute is set correctly for your GPU (reference: CUDA GPUs | NVIDIA Developer);
  • TENSORRT_INCS and TENSORRT_LIBS point to the right paths.
......
else ifeq ($(cpu_arch), x86_64)  # x86_64 PC
  $(warning "compute=75" is for GeForce RTX-2080 Ti.  Please make sure CUDA compute is set correctly for your system in the Makefile.)
  compute=75
......
NVCCFLAGS=-m64 -gencode arch=compute_$(compute),code=sm_$(compute) \
               -gencode arch=compute_$(compute),code=compute_$(compute)
......
# These are the directories where I installed TensorRT on my x86_64 PC.
TENSORRT_INCS=-I"/usr/local/TensorRT-7.1.3.4/include"
TENSORRT_LIBS=-L"/usr/local/TensorRT-7.1.3.4/lib"
......

Otherwise, you should be able to follow the steps in the original README.md to get these 2 demos working.