-
Notifications
You must be signed in to change notification settings - Fork 1
/
simplify_leaves_speech_mfcc.py
203 lines (168 loc) · 7.75 KB
/
simplify_leaves_speech_mfcc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import torch
import typer
import pickle
import mlflow
import numpy as np
import pandas as pd
import seaborn as sns
from time import time
from fastfeedforward import FFF
from matplotlib import pyplot as plt
# Load local modules
from fff_trainer import test
from fff_experiment_speech_mfcc import load_data
# Set numpy print precision to 2 decimal digits
np.set_printoptions(precision=2)
# Set device
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using {DEVICE}")
def get_dist(net, testloader):
"""
Returns the distribution of samples throughout the tree.
"""
y = []
l = []
with torch.no_grad():
# Iterate over data
for data in testloader:
images, labels = data[0].to(DEVICE), data[1].to(DEVICE)
outputs, leaves = net.forward(images, return_nodes=True)
y.append(labels)
l.append(leaves)
y = torch.concat(y, 0)
l = torch.concat(l, 0)
return y, l
class FFFWrapper(torch.nn.Module):
def __init__(self, fff):
super(FFFWrapper, self).__init__()
self._fff = fff
self._fastinference = [None for i in range(2 ** (self._fff.fff.depth.item()))]
def forward(self, x, return_nodes=False):
"""
Override the forward method in order to log the data distribution.
"""
x = x.view(len(x), -1)
original_shape = x.shape
batch_size = x.shape[0]
last_node = torch.zeros(len(x))
current_nodes = torch.zeros((batch_size,), dtype=torch.long, device=x.device)
for i in range(self._fff.fff.depth.item()):
plane_coeffs = self._fff.fff.node_weights.index_select(dim=0, index=current_nodes)
plane_offsets = self._fff.fff.node_biases.index_select(dim=0, index=current_nodes)
plane_coeff_score = torch.bmm(x.unsqueeze(1), plane_coeffs.unsqueeze(-1))
plane_score = plane_coeff_score.squeeze(-1) + plane_offsets
plane_choices = (plane_score.squeeze(-1) >= 0).long()
platform = torch.tensor(2 ** i - 1, dtype=torch.long, device=x.device)
next_platform = torch.tensor(2 ** (i+1) - 1, dtype=torch.long, device=x.device)
current_nodes = (current_nodes - platform) * 2 + plane_choices + next_platform
leaves = current_nodes - next_platform
new_logits = torch.empty((batch_size, self._fff.fff.output_width), dtype=torch.float, device=x.device)
last_node = leaves
for i in range(leaves.shape[0]):
leaf_index = leaves[i]
if self._fastinference[leaf_index] is not None:
new_logits[i] = self._fastinference[leaf_index]
else:
logits = torch.matmul( x[i].unsqueeze(0), self._fff.fff.w1s[leaf_index])
logits += self._fff.fff.b1s[leaf_index].unsqueeze(-2)
activations = self._fff.fff.activation(logits)
new_logits[i] = torch.matmul( activations, self._fff.fff.w2s[leaf_index]).squeeze(-2)
if return_nodes:
return new_logits.view(*original_shape[:-1], self._fff.fff.output_width), last_node
return new_logits.view(*original_shape[:-1], self._fff.fff.output_width)
def simplify_leaves(self, trainloader):
y, leaves = (get_dist(self, trainloader))
y = y.cpu().detach().numpy()
outputs = y.max() + 1
leaves = leaves.cpu().detach().numpy()
n_simplifications = 0
ratios = {}
for l in np.unique(leaves):
ratios[l] = torch.zeros(outputs)
indices = leaves == l
for i in range(outputs):
ratios[l][i] = (np.sum(y[indices] == i) / np.sum(indices))
argmax = np.argmax(ratios[l])
if ratios[l][argmax] > 0.7:
output = torch.zeros(outputs)
output[argmax] = 1
self._fastinference[l] = output
n_simplifications += 1
print(f"Leaf {l} has been replaced with {argmax}")
print(self._fastinference)
return n_simplifications
def test_splitting(inputs: int, l_w: int, outputs: int, d: int, norm_weight: float = None):
# Load data
trainloader, testloader, n = load_data()
# Retrieve all the runs having "leaf_width" = "4" and "depth" = "4"
if norm_weight is not None:
filter_string = f'params.leaf_width = "{l_w}" and params.depth = "{d}" and params.norm_weight = "{norm_weight}"'
runs = mlflow.search_runs(
experiment_ids=["4"],
filter_string=filter_string,
output_format='pandas'
)
else:
filter_string = f'params.leaf_width = "{l_w}" and params.depth = "{d}"'
runs = mlflow.search_runs(
experiment_ids=["3"],
filter_string=filter_string,
output_format='pandas'
)
print(f"{len(runs)} runs found with {filter_string}")
for run_id in runs['run_id']:
already_ran = mlflow.search_runs(
experiment_ids=["5"],
output_format='pandas'
)
if len(already_ran) > 0 and run_id in already_ran["params.starting_run"].values:
print(f"Skipping {run_id}")
continue
try:
with mlflow.start_run(experiment_id="5"):
# Get the run with the current run_id
run = mlflow.get_run(run_id)
mlflow.log_param("starting_run", run_id)
print(f"Testing run {run.info.run_id}")
# Load the state dict from the model
model_uri = f"runs:/{run.info.run_id}/model"
model = mlflow.pytorch.load_model(model_uri)
model.eval()
model = FFFWrapper(model)
# Test the model
y, leaves = (get_dist(model, trainloader))
y = y.cpu().detach().numpy()
leaves = leaves.cpu().detach().numpy()
# Testing time and accuracy
t = time()
train_loss, train_acc = test(model, trainloader)
test_loss, test_acc = test(model, testloader)
t = time() - t
print(f"Inference time: {t}s")
print(f"[Before simplification] Train loss: {train_loss:.4f}, train acc: {train_acc:.4f}")
print(f"[Before simplification] Test loss: {test_loss:.4f}, test acc: {test_acc:.4f}")
mlflow.log_metric("train_loss_before", train_loss)
mlflow.log_metric("test_loss_before", test_loss)
mlflow.log_metric("train_acc_before", train_acc)
mlflow.log_metric("test_acc_before", test_acc)
mlflow.log_metric("inference_time_before", t)
n_simplifications = model.simplify_leaves(trainloader)
mlflow.log_metric("n_simplified_leaves", n_simplifications)
t = time()
train_loss, train_acc = test(model, trainloader)
test_loss, test_acc = test(model, testloader)
t = time() - t
print(f"Inference time: {t}s")
print(f"[After simplification] Train loss: {train_loss:.4f}, train acc: {train_acc:.4f}")
print(f"[After simplification] Test loss: {test_loss:.4f}, test acc: {test_acc:.4f}")
mlflow.log_metric("train_loss_after", train_loss)
mlflow.log_metric("test_loss_after", test_loss)
mlflow.log_metric("train_acc_after", train_acc)
mlflow.log_metric("test_acc_after", test_acc)
mlflow.log_metric("inference_time_after", t)
pickle.dump(model, open("truncated_model.pkl", "wb"))
mlflow.log_artifact("./truncated_model.pkl")
except:
print(f"Cannot run on {run_id}")
if __name__ == '__main__':
typer.run(test_splitting)