forked from huangleiBuaa/CenteredWN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCWN.py
60 lines (48 loc) · 1.98 KB
/
CWN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
"""
Centered weight normalization in accelerating training of deep neural networks
ICCV 2017
Authors: Lei Huang
"""
import torch.nn
import torch.nn.functional as F
from torch.nn import Parameter
from torch.autograd import Variable
from typing import List
from torch.autograd.function import once_differentiable
__all__ = ['CWN_Conv2d']
# norm funcitons--------------------------------
class CWNorm(torch.nn.Module):
def forward(self, weight):
weight_ = weight.view(weight.size(0), -1)
weight_mean = weight_.mean(dim=1, keepdim=True)
weight_ = weight_ - weight_mean
norm = weight_.norm(dim=1, keepdim=True) + 1e-5
weight_CWN = weight_ / norm
return weight_CWN.view(weight.size())
class CWN_Conv2d(torch.nn.Conv2d):
def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True,
NScale=1.414, adjustScale=False, *args, **kwargs):
super(CWN_Conv2d, self).__init__(in_channels, out_channels, kernel_size, stride, padding, dilation, groups, bias)
print('CWN:---NScale:', NScale, '---adjust:', adjustScale)
self.weight_normalization = CWNorm()
self.scale_ = torch.ones(out_channels, 1, 1, 1).fill_(NScale)
if adjustScale:
self.WNScale = Parameter(self.scale_)
else:
# self.scale = Variable(self.scale, requires_grad=False)
self.register_buffer('WNScale', self.scale_)
def forward(self, input_f: torch.Tensor) -> torch.Tensor:
weight_q = self.weight_normalization(self.weight)
weight_q = weight_q * self.WNScale
out = F.conv2d(input_f, weight_q, self.bias, self.stride, self.padding, self.dilation, self.groups)
return out
if __name__ == '__main__':
cwn_ = CWNorm()
print(cwn_)
w_ = torch.randn(4, 4, 3, 3)
w_.requires_grad_()
y_ = cwn_(w_)
z_ = y_.view(w_.size(0), -1)
print(z_.norm(dim=1))
y_.sum().backward()
print('w grad', w_.grad.size())