forked from huangleiBuaa/CenteredWN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexp_MLP.lua
executable file
·339 lines (265 loc) · 9.44 KB
/
exp_MLP.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
-------------------------------------------------------------------------------------------------------
--Script for MLP architecture
-------------------------------------------------------------------------------------------------
require 'xlua'
require 'torch'
require 'math'
require 'nn'
require 'optim'
require 'gnuplot'
require 'image'
require 'models/MLP/model_WN'
local c = require 'trepl.colorize'
------------------------------------------------------------------------------
-- INITIALIZATION AND DATA
------------------------------------------------------------------------------
-- threads
threadNumber=2
torch.setnumthreads(threadNumber)
cmd = torch.CmdLine()
cmd:text()
cmd:text()
cmd:text('compare the Decorelated BatchNormalizaiton method with baselines on MLP architechture')
cmd:text()
cmd:text('Options')
cmd:option('-model','CWN_Row_scale','the methods:sgd, WN_Row_scale, WCBN_Row_scale')
cmd:option('-mode_nonlinear',2,'nonlinear module: 1 indicates tanh, 0 indicates sigmoid, 2 indecates Relu')
cmd:option('-max_epoch',200,'maximum number of epochs')
cmd:option('-n_hidden_number',128,'the dimension of the hidden laysers')
cmd:option('-save',"log_MLP_svhn" ,'subdirectory to save logs')
cmd:option('-inputScaled',true,'whether preoprocess the input, scale to (0,1)')
cmd:option('-inputCentered',true,'whether preoprocess the input, minus the mean')
cmd:option('-batchSize',1024,'the number of examples per batch')
cmd:option('-learningRate',0.5,'learning rate')
cmd:option('-weightDecay',0,'weight Decay for regularization')
cmd:option('-momentum',0,'momentum')
cmd:option('-optimization','simple','the methods: options:adam,simple,rms,adagrad,lbfgs')
cmd:option('-T',200,'the interval to update the coefficient, for natural neural network')
cmd:option('-epcilo',1,'the revision term for natural neural network')
cmd:option('-seed',1,'the random seed')
cmd:text()
-- parse input params
opt = cmd:parse(arg)
--opt.rundir = cmd:string('log_MLP_8Final', opt, {dir=true})
--paths.mkdir(opt.rundir)
-- create log file
--cmd:log(opt.rundir .. '/log', opt)
torch.manualSeed(opt.seed) -- fix random seed so program runs the same every time
--opt.orth_intial=true
opt.train_size = 60000 -- set to 0 or 60000 to use all 60000 training data
opt.test_size = 0 -- 0 means load all data
opt.Ns=0.1*opt.T --used for nnn and BN_NoBP method.
opt.printInterval=10
if opt.optimization == 'lbfgs' then
opt.optimState = {
learningRate = opt.learningRate,
maxIter = 2,
nCorrection = 10
}
optimMethod = optim.lbfgs
elseif opt.optimization == 'simple' then
opt.optimState = {
learningRate =opt.learningRate,
weightDecay = opt.weightDecay,
momentum = opt.momentum,
learningRateDecay = 0
}
optimMethod = optim.sgd
elseif opt.optimization == 'adagrad' then
opt.optimState = {
learningRate = opt.learningRate,
}
optimMethod = optim.adagrad
elseif opt.optimization == 'rms' then
opt.optimState = {
learningRate = opt.learningRate,
alpha=0.9
}
optimMethod = optim.rmsprop
elseif opt.optimization == 'adam' then
opt.optimState = {
learningRate = opt.learningRate
}
optimMethod = optim.adam
elseif opt.optimization == 'adadelta' then
opt.optimState = {
learningRate = opt.learningRate
}
optimMethod = optim.adadelta
else
error('Unknown optimizer')
end
-- load dataset using dataset-mnist.lua into tensors (first dim of data/labels ranges over data)
function load_dataset(train_or_test, count)
-- load
local data
if train_or_test == 'train' then
data = mnist.loadTrainSet(count, {32, 32})
else
data = mnist.loadTestSet(count, {32, 32})
end
-- shuffle the dataset
local shuffled_indices = torch.randperm(data.data:size(1)):long()
-- creates a shuffled *copy*, with a new storage
data.data = data.data:index(1, shuffled_indices):squeeze()
data.labels = data.labels:index(1, shuffled_indices):squeeze()
data.data = data.data:reshape(data.data:size(1), 32*32)
return data
end
trainData = torch.load('./dataset/svhn_train_1024.dat')
testData = torch.load('./dataset/svhn_test_1024.dat')
opt.n_inputs=trainData.data:size(2)
opt.n_outputs=trainData.labels:max()
-- scale to (0,1)
if opt.inputScaled then
for i=1, testData.data:size(1) do
testData.data[i]:div(255)
end
for i=1, trainData.data:size(1) do
trainData.data[i]:div(255)
end
end
--o mean-----
if opt.inputCentered then
local mean = trainData.data:mean()
trainData.data:add(-mean)
local mean = testData.data:mean()
testData.data:add(-mean)
end
----------------------------------------------------------------------
function evaluateAccuracy(prediction, y)
-- load
correct=0;
length=y:size(1)
for i=1, length do
if prediction[i][1]==y[i] then--the type of prediction is 2 D Tensor, y is vector
correct=correct+1;
end
end
accuracy=correct/length
return accuracy
end
model, criterion = create_model(opt)
confusion = optim.ConfusionMatrix(opt.n_outputs)
print('Will save at '..opt.save)
paths.mkdir(opt.save)
log_name=opt.model..'_'..opt.optimization..'_lr'..opt.learningRate..'.log'
testLogger = optim.Logger(paths.concat(opt.save, log_name))
testLogger:setNames{'% mean class accuracy (train set)', '% mean class accuracy (test set)'}
testLogger.showPlot = false
------------------------------------------------------------------------------
-- TRAINING
------------------------------------------------------------------------------
parameters, gradParameters = model:getParameters()
print(model)
------------------------------------------------------------------------
-- training
------------------------------------------------------------------------
function train()
model:training()
epoch = epoch or 1
-- print(c.blue '==>'.." online epoch # " .. epoch .. ' [batchSize = ' .. opt.batchSize .. ']')
local targets = torch.Tensor(opt.batchSize)
local indices = torch.randperm(trainData.data:size(1)):long():split(opt.batchSize)
-- remove last element so that all the batches have equal size
indices[#indices] = nil
-- local tic = torch.tic()
for t,v in ipairs(indices) do
-- xlua.progress(t, #indices)
local inputs = trainData.data:index(1,v)
targets:copy(trainData.labels:index(1,v))
local feval = function(x)
if x ~= parameters then parameters:copy(x) end
gradParameters:zero()
local outputs = model:forward(inputs)
local f = criterion:forward(outputs, targets)
local df_do = criterion:backward(outputs, targets)
model:backward(inputs, df_do)
--print(outputs)
confusion:batchAdd(outputs, targets)
if iteration % opt.printInterval ==0 then
print(string.format("minibatches processed: %6s, loss = %6.6f", iteration, f))
end
losses[#losses + 1] = f
--------------------------exit if loss exploding
if f>1000 then
print('loss is exploding, aborting.')
os.exit()
end
timeCosts[#timeCosts+1]=torch.toc(start_time)
-- print(string.format("time Costs = %6.6f", timeCosts[#timeCosts]))
iteration=iteration+1
return f,gradParameters
end
optimMethod (feval, parameters, opt.optimState)
if ((string.match(opt.model,'nnn')) and iteration % opt.T ==0) then
------------------start:update the proMatrix of NNN-------------------------------
local index = torch.randperm(trainData.data:size(1))[{{1, opt.Ns}}]:long()
local batch_inputs=trainData.data:index(1,index)
local batch_targets = trainData.labels:index(1,index)
local batch_outputs = model:forward(batch_inputs)
for k,v in pairs(model:findModules('nn.NormLinear_new')) do
print('update nnn projection:')
v:updatePromatrix(opt.epcilo)
end
end
------------------end:update the proMatrix of NNN-------------------------------
end
confusion:updateValids()
print(('Train accuracy: '..c.cyan'%.2f'..' %%\t time: %.2f s'):format(
confusion.totalValid * 100, torch.toc(start_time)))
train_acc = confusion.totalValid * 100
train_accus[#train_accus+1]=train_acc
confusion:zero()
epoch = epoch + 1
end
function test()
model:evaluate()
print(c.blue '==>'.." testing")
local bs = 1627
for i=1,testData.data:size(1),bs do
local outputs = model:forward(testData.data:narrow(1,i,bs))
confusion:batchAdd(outputs, testData.labels:narrow(1,i,bs))
end
confusion:updateValids()
print('Test accuracy:', confusion.totalValid * 100)
test_accus[#test_accus+1]=confusion.totalValid * 100
if testLogger then
paths.mkdir(opt.save)
testLogger:add{train_acc, confusion.totalValid * 100}
testLogger:style{'-','-'}
testLogger:plot()
end
confusion:zero()
end
iteration=0
losses={}
timeCosts={}
train_times={}
test_times={}
train_accus={}
test_accus={}
start_time=torch.tic()
for i=1,opt.max_epoch do
-- train()
-- test()
local function t(f) local s = torch.Timer();f() return s:time().real end
local train_time = t(train)
train_times[#train_times+1]=train_time
print('train Time:'..train_time)
local test_time = t(test)
test_times[#test_times+1]=test_time
print('test Time:'..test_time)
end
results={}
opt.optimState=nil
results.opt=opt
results.losses=losses
results.train_accus=train_accus
results.test_accus=test_accus
torch.save('result_MLP_'..opt.model..
'_'..opt.optimization..'_b'..opt.batchSize..'_lr'..opt.learningRate..
'_nl'..opt.mode_nonlinear..'_mm'..opt.momentum..
'_ME'..opt.max_epoch..
'_seed'..opt.seed..
'.dat',results)