-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathpredictor.py
225 lines (217 loc) · 7.81 KB
/
predictor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import pickle
import argparse
import itertools
from sklearn.linear_model import Perceptron
from sklearn import linear_model
import random
from sklearn.neighbors import KNeighborsClassifier
import itertools
from scipy import stats
from sklearn.linear_model import LogisticRegression
from sklearn.naive_bayes import GaussianNB
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import AdaBoostClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn import ensemble
from sklearn.svm import SVC
from sklearn import svm
from sklearn import linear_model
from sklearn import preprocessing
from sklearn import gaussian_process
from sklearn.neighbors.nearest_centroid import NearestCentroid
from sklearn import tree
from sklearn.ensemble import GradientBoostingRegressor
import numpy as np
import csv
from sklearn.neighbors import NearestNeighbors
from sklearn.linear_model import SGDClassifier
from os import listdir
from os.path import isfile, join
import numpy as np
models = [
Perceptron(fit_intercept=False, n_iter=10, shuffle=False),
Perceptron(fit_intercept=False, n_iter=3, shuffle=False),
Perceptron(fit_intercept=False, n_iter=5, shuffle=False),
Perceptron(fit_intercept=True, n_iter=10, shuffle=False),
Perceptron(fit_intercept=True, n_iter=3, shuffle=False),
Perceptron(fit_intercept=True, n_iter=5, shuffle=False),
#linear_model.Ridge(alpha = .5),
svm.LinearSVC(),
svm.SVR(),
SGDClassifier(loss="hinge", penalty="l2"),
SGDClassifier(loss="log"),
KNeighborsClassifier(n_neighbors=2),
KNeighborsClassifier(n_neighbors=6),
KNeighborsClassifier(n_neighbors=10),
NearestCentroid(),
RandomForestClassifier(n_estimators=2),
RandomForestClassifier(n_estimators=10),
RandomForestClassifier(n_estimators=18),
RandomForestClassifier(criterion="entropy", n_estimators=2),
RandomForestClassifier(criterion="entropy", n_estimators=10),
RandomForestClassifier(criterion="entropy", n_estimators=18),
AdaBoostClassifier(n_estimators=50),
AdaBoostClassifier(n_estimators=100),
AdaBoostClassifier(learning_rate= 0.5, n_estimators=50),
AdaBoostClassifier(learning_rate= 0.5, n_estimators=100),
LogisticRegression(random_state=1),
RandomForestClassifier(random_state=1),
GaussianNB(),
linear_model.LinearRegression(),
linear_model.Lasso(alpha = 0.1),
linear_model.Lasso(alpha = 0.5),
tree.DecisionTreeClassifier(),
tree.DecisionTreeRegressor(),
linear_model.ElasticNet(alpha=0.1, l1_ratio=0.7),
linear_model.ElasticNet(alpha=0.5, l1_ratio=0.7),
linear_model.ElasticNet(alpha=0.1, l1_ratio=0.2),
linear_model.ElasticNet(alpha=0.5, l1_ratio=0.2),
linear_model.RidgeCV(alphas=[0.1, 1.0, 10.0]),
linear_model.LassoLars(alpha=0.1),
linear_model.LassoLars(alpha=0.5)]
#linear_model.BayesianRidge()]
ap = argparse.ArgumentParser()
ap.add_argument("-f", "--file", help="file to learn from")
ap.add_argument("-p", "--prev_acc", type=float, help="previous model accuracy")
ap.add_argument("-m", "--vote_method", help="what vote method is this voting on?")
args = vars(ap.parse_args())
def produce_ensemble_guesses_restricted(all_guesses, fold_labels, clfs, included_clfs):
success = 0
count = 0.0
conmat = {'fp': 0, 'fn': 0, 'tp': 0, 'tn': 0}
clf_indices = []
for clf in clfs:
if str(clf) in included_clfs:
clf_indices.append(1)
else:
clf_indices.append(0)
sub_guesses = [g for i,g in enumerate(all_guesses) if clf_indices[i] == 1]
aggregate_guesses = [np.mean(el) for el in np.matrix(sub_guesses).transpose().tolist()]
for pair in np.matrix([aggregate_guesses, fold_labels]).transpose().tolist():
count += 1
if pair[0] > 0.5 and pair[1] == 1:
conmat['tp'] += 1
success += 1
elif pair[0] > 0.5 and pair[1] == 0:
conmat['fp'] += 1
elif pair[0] <= 0.5 and pair[1] == 1:
conmat['fn'] += 1
elif pair[0] <= 0.5 and pair[1] == 0:
conmat['tn'] += 1
success += 1
return conmat, success/count
def read_csv(filename):
dataset = []
i = 0
with open(filename, 'rb') as f:
reader = csv.reader(f)
for row in reader:
if i != 0:
dataset.append([float(el) for el in row])
i += 1
return dataset
def run_ensemble_binary(filename, models, str_columns, keys_included):
keys, dataset, labels = dataset_array_form_from_csv(filename, str_columns, keys_included)
folds = generate_folds(dataset, labels, fold_count=10)
folded_results = []
conmats = []
guesses = []
fold_labels = [fold["test_labels"] for fold in folds]
for clf in models:
#print clf
this_conmat = {'fp': 0, 'fn': 0, 'tp': 0, 'tn': 0}
this_guess = []
for fold in folds:
clf.fit(np.array(fold['train_set']), np.array(fold['train_labels']))
predictions = list(clf.predict(fold["test_set"]))
for prediction in predictions:
this_guess.append(prediction)
for pair in np.matrix([predictions, fold["test_labels"]]).transpose().tolist():
if pair[0] >= 0.5 and pair[1] == 1:
this_conmat['tp'] += 1
elif pair[0] >= 0.5 and pair[1] == 0:
this_conmat['fp'] += 1
elif pair[0] < 0.5 and pair[1] == 1:
this_conmat['fn'] += 1
elif pair[0] < 0.5 and pair[1] == 0:
this_conmat['tn'] += 1
conmats.append(this_conmat)
guesses.append(this_guess)
return conmats, guesses, [item for sublist in fold_labels for item in sublist], models
def dataset_array_form_from_csv(filename, str_columns, keys_included):
keys = []
dataset = []
labels = []
bad_rows = []
with open(filename, 'rb') as csvfile:
reader = csv.reader(csvfile, delimiter=',', quotechar='"')
i = -1
for row in reader:
i += 1
if keys_included and i == 0:
keys = row
else:
# if '' not in row:
record = []
for j,val in enumerate(row):
if j not in str_columns:
parsed_val = None
if val == '':
parsed_val = None
else:
try:
parsed_val = float(val)
except ValueError:
parsed_val = np.random.rand()
if j == 0:
labels.append(parsed_val)
else:
record.append(parsed_val)
dataset.append(record)
return keys, dataset, labels
def generate_folds(dataset, labels, fold_count):
folded = []
for i in range(fold_count):
folded.append({'test_set': [], 'train_set': [], 'test_labels': [], 'train_labels': []})
i = 0
all_counts = range(fold_count)
for i in range(len(dataset)):
mod = i%fold_count
folded[mod]['test_set'].append(dataset[i])
folded[mod]['test_labels'].append(labels[i])
for c in all_counts:
if c != mod:
folded[c]['train_set'].append(dataset[i])
folded[c]['train_labels'].append(labels[i])
return folded
def random_combination(iterable, r):
"Random selection from itertools.combinations(iterable, r)"
pool = tuple(iterable)
n = len(pool)
indices = sorted(random.sample(xrange(n), r))
return tuple(pool[i] for i in indices)
all_conmats, all_guesses, fold_labels, used_models = run_ensemble_binary(args['file'], models, [], False)
keys, dataset, labels = dataset_array_form_from_csv(args['file'], [], False)
current_best_fn = [[], 0]
current = 0
improvement_count = 0
best_conmat = {}
total_iters = 0
while total_iters < 200:
try:
h = random_combination(models, int(random.random() * len(models)))
conmat, pct = produce_ensemble_guesses_restricted(all_guesses, fold_labels, models, [str(m) for m in h])
current += 1
total_iters += 1
if current_best_fn[-1] < pct:
current = 0
improvement_count += 1
current_best_fn = [h, pct]
best_conmat = conmat
except:
gg = 1
if current_best_fn[-1] > args["prev_acc"]/100:
model_file = open(args["vote_method"]+".pkl", "wb")
pickle.dump(current_best_fn[0], model_file)
model_file.close()
print str.join(",", [str(el) for el in [current_best_fn[-1], best_conmat["tp"], best_conmat["tn"], best_conmat["fp"], best_conmat["fn"]]])