-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathdata_loader_fsnet.py
254 lines (165 loc) · 6.98 KB
/
data_loader_fsnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
# @Time : 25/09/2020 18:02
# @Author : Wei Chen
# @Project : Pycharm
import torch
from torch.utils.data import Dataset, DataLoader
import _pickle as pickle
from uti_tool import *
import random
def getFiles(file_dir,suf):
L=[]
for root, dirs, files in os.walk(file_dir):
#print('root: ',dirs)
for file in files:
if os.path.splitext(file)[1] == suf:
L.append(os.path.join(root, file))
L.sort(key=lambda x:int(x[-11:-4]))
return L
def getDirs(file_dir):
L=[]
dirs = os.listdir(file_dir)
return dirs
def load_depth(depth_path):
""" Load depth image from img_path. """
depth = cv2.imread(depth_path, -1)
if len(depth.shape) == 3:
# This is encoded depth image, let's convert
# NOTE: RGB is actually BGR in opencv
depth16 = depth[:, :, 1]*256 + depth[:, :, 2]
depth16 = np.where(depth16==32001, 0, depth16)
depth16 = depth16.astype(np.uint16)
elif len(depth.shape) == 2 and depth.dtype == 'uint16':
depth16 = depth
else:
assert False, '[ Error ]: Unsupported depth type.'
return depth16
def chooselimt(pts0, lab, zmin, zmax):
pts = pts0.copy()
labs = lab.copy()
pts1=pts[np.where(pts[:,2]<zmax)[0],:]
lab1 = labs[np.where(pts[:,2]<zmax)[0], :]
ptsn = pts1[np.where(pts1[:, 2] > zmin)[0], :]
labs = lab1[np.where(pts1[:, 2] > zmin)[0],:]
return ptsn,labs
def circle_iou(pts,lab, dia):
# fx = K[0, 0]
# ux = K[0, 2]
# fy = K[1, 1]
# uy = K[1, 2]
a = pts[lab[:, 0] == 1, :]
ptss = pts[lab[:, 0] == 1, :]
idx = np.random.randint(0, a.shape[0])
zmin = max(0,ptss[idx,2]-dia)
zmax = ptss[idx,2]+dia
return zmin, zmax
class CateDataset(Dataset):
def __init__(self, root_dir, K, cate,lim=1,transform=None,corners=0, temp=None):
cats = ['bottle', 'bowl', 'camera', 'can', 'laptop', 'mug']
objs = os.listdir(root_dir)
self.objs_name = objs
self.objs = np.zeros((len(objs),1),dtype=np.uint)
for i in range(len(objs)):
if cate in objs[i]:
self.objs[i]=1
self.cate_id = np.where(np.array(cats)==cate)[0][0]+1
self.ids = np.where(self.objs==1)
self.root_dir = root_dir
self.lim=lim
self.transform=transform
self.cate = cate
self.K = K
self.corners = corners
self.rad=temp
if cate=='labtop':
self.rad = 600
if cate == 'bottle':
self.rad = 400
datapath = 'Real/train/scene_' ## file path of train scenes
model_path = 'real_train/plys/' ##object model
self.data = datapath
self.c = random.randint(0, len(self.ids) - 1)
self.model_path = model_path
def __len__(self):
return 1500 ##
def __getitem__(self, index):
c = random.randint(0, len(self.ids[0])-1)
obj_id = self.ids[0][c]
cate = self.objs_name[obj_id]
pc = load_ply(self.model_path+'/%s.ply'%(cate))['pts']*1000.0
root_dir = self.root_dir + '/%s/' % (cate)
pts_ps = getFiles_ab(root_dir+'points/','.txt',-12,-4)
idx = random.randint(0, len(pts_ps) - 1)
pts_name = pts_ps[idx]
lab_name = getFiles_ab(root_dir+'points_labs/','.txt',-12,-4)[idx]
scene_id = int(pts_name[-12:-4])//1000+1 ## you can change according to your own name rules
img_id = int(pts_name[-12:-4])-(scene_id-1)*1000
depth_p = self.data+'%d'%(scene_id)+'/%04d_depth.png'%(img_id)
label_p = self.data+'%d'%(scene_id)+'/%04d_label.pkl'%(img_id)
gts = pickle.load(open(label_p, 'rb'))
idin = np.where(np.array(gts['model_list']) == cate)
if len(idin[0])==0: ## fix some wrong cases
bbx = np.array([1,2,3,4]).reshape((1, 4))
R = np.eye(3)
T = np.array([0,0,0]).reshape(1,3)
else:
bbx = gts['bboxes'][idin[0]].reshape((1, 4)) ## y1 x1 y2 x2
R = gts['rotations'][idin[0]].reshape(3,3)
T = gts['translations'][idin[0]].reshape(1,3)*1000.0
self.pc = pc
self.R = R
self.T = T
depth = cv2.imread(depth_p,-1)
# pts_name = bpp + 'pose%08d.txt' % (idx)
label = np.loadtxt(lab_name)
label_ = label.reshape((-1, 1))
points_ = np.loadtxt(pts_name)
points_, label_,sx,sy,sz = self.aug_pts_labs(depth,points_,label_,bbx)
Scale = np.array([sx,sy,sz])
if points_.shape[0]!=label_.shape[0]:
print(self.root_dir[idx])
choice = np.random.choice(len(points_), 2000, replace=True)
points = points_[choice, :]
label = label_[choice, :]
sample = {'points': points, 'label': label, 'R':R, 'T':T,'cate_id':self.cate_id,'scale':Scale,'dep':depth_p}
return sample
def aug_pts_labs(self, depth,pts,labs,bbx):
## 2D bounding box augmentation and fast relabeling
bbx_gt = [bbx[0,1], bbx[0,3],bbx[0,0],bbx[0,2]]#x1,x2, y1 , y2
bbx = shake_bbx(bbx_gt) ## x1,x2,y1,y2
depth, bbx_iou = depth_out_iou(depth, bbx, bbx_gt)
mesh = depth_2_mesh_bbx(depth, [bbx[2], bbx[3], bbx[0], bbx[1]], self.K)
mesh = mesh[np.where(mesh[:, 2] > 0.0)]
mesh = mesh[np.where(mesh[:, 2] < 5000.0)]
if len(mesh) > 1000:
choice = np.random.choice(len(mesh), len(mesh)//2, replace=True)
mesh = mesh[choice, :]
pts_a, labs_a = pts_iou(pts.copy(), labs.copy(), self.K, bbx_iou)
assert pts_a.shape[0]==labs_a.shape[0]
if len(pts_a[labs_a[:, 0] == 1, :])<50: ## too few points in intersection region
pts_=pts_a.copy()
labs_ = labs_a.copy()
else:
pts_ = pts.copy()
labs_ = labs.copy()
N = pts_.shape[0]
M = mesh.shape[0]
mesh = np.concatenate([mesh, pts_], axis=0)
label = np.zeros((M + N, 1), dtype=np.uint)
label[M:M + N, 0] = labs_[:, 0]
points = mesh
if self.lim == 1:
zmin, zmax = circle_iou(points.copy(), label.copy(), self.rad)
points, label = chooselimt(points, label,zmin, zmax)
### 3D deformation
Rt = get_rotation(180,0,0)
self.pc = np.dot(Rt, self.pc.T).T ## the object 3D model is up-side-down along the X axis in our case, you may not need this code to reverse
s = 0.8
e = 1.2
pointsn, ex,ey, ez,s = defor_3D(points,label, self.R, self.T, self.pc, scalex=(s, e),scalez=(s, e),
scaley=(s, e), scale=(s, e), cate=self.cate)
sx,sy,sz = var_2_norm(self.pc, ex, ey, ez, c=self.cate)
return pointsn, label.astype(np.uint8), sx,sy,sz
def load_pts_train_cate(data_path ,bat,K,cate,lim=1,rad=400,shuf=True,drop=False,corners=0,nw=0):
data=CateDataset(data_path, K, cate,lim=lim,transform=None,corners=corners, temp=rad)
dataloader = DataLoader(data, batch_size=bat, shuffle=shuf, drop_last=drop,num_workers=nw)
return dataloader