diff --git a/examples/collection/CMakeLists.txt b/examples/collection/CMakeLists.txt index 7b6186797f..f9f776b46d 100644 --- a/examples/collection/CMakeLists.txt +++ b/examples/collection/CMakeLists.txt @@ -5,6 +5,7 @@ set( jacobi1d_vt jacobi1d_vt_sync jacobi2d_vt + jacobi2d_vt_sync migrate_collection polymorphic_collection insertable_collection diff --git a/examples/collection/jacobi1d_vt.cc b/examples/collection/jacobi1d_vt.cc index 39ccb0bec9..14f106f150 100644 --- a/examples/collection/jacobi1d_vt.cc +++ b/examples/collection/jacobi1d_vt.cc @@ -70,7 +70,7 @@ static constexpr std::size_t const default_nrow_object = 8; static constexpr std::size_t const default_num_objs = 4; -static constexpr std::size_t const check_conv_freq = 100; +static constexpr std::size_t const check_conv_freq = 10; static constexpr double const default_tol = 1.0e-02; struct NodeObj; diff --git a/examples/collection/jacobi2d_vt.cc b/examples/collection/jacobi2d_vt.cc index eba9608c43..e80b8c3b6d 100644 --- a/examples/collection/jacobi2d_vt.cc +++ b/examples/collection/jacobi2d_vt.cc @@ -42,6 +42,7 @@ */ #include +#include #include #include @@ -76,23 +77,17 @@ static constexpr std::size_t const default_nrow_object = 8; static constexpr std::size_t const default_num_objs = 4; +static std::size_t check_conv_freq = 1; static constexpr double const default_tol = 1.0e-02; -struct NodeObj { - bool is_finished_ = false; - void workFinishedHandler() { is_finished_ = true; } - bool isWorkFinished() { return is_finished_; } -}; +struct NodeObj; using NodeObjProxy = vt::objgroup::proxy::Proxy; struct LinearPb2DJacobi : vt::Collection { - private: - std::vector tcur_, told_; std::vector rhs_; size_t iter_ = 0; - size_t msgReceived_ = 0, totalReceive_ = 0; size_t numObjsX_ = 1, numObjsY_ = 1; size_t numRowsPerObject_ = default_nrow_object; size_t maxIter_ = 5; @@ -102,55 +97,13 @@ struct LinearPb2DJacobi : vt::Collection { LinearPb2DJacobi() : tcur_(), told_(), rhs_(), iter_(0), - msgReceived_(0), totalReceive_(0), numObjsX_(1), numObjsY_(1), numRowsPerObject_(default_nrow_object), maxIter_(5) { } - struct BlankMsg : vt::CollectionMessage { }; - - struct LPMsg : vt::CollectionMessage { - - size_t numXObjs = 0; - size_t numYObjs = 0; - size_t numIter = 0; - NodeObjProxy objProxy; - - LPMsg() = default; - - LPMsg(const size_t nx, const size_t ny, const size_t nref, NodeObjProxy proxy) - : numXObjs(nx), numYObjs(ny), numIter(nref), objProxy(proxy) - { } - - }; - - - void checkCompleteCB(double const normRes) { - // - // Only one object for the reduction will visit - // this function - // - - auto const iter_max_reached = iter_ > maxIter_; - auto const norm_res_done = normRes < default_tol; - - if (iter_max_reached or norm_res_done) { - auto const to_print = iter_max_reached ? - "\n Maximum Number of Iterations Reached. \n\n" : - fmt::format("\n Max-Norm Residual Reduced by {} \n\n", default_tol); - - fmt::print(to_print); - - // Notify all nodes that computation is finished - objProxy_.broadcast<&NodeObj::workFinishedHandler>(); - } else { - fmt::print(" ## ITER {} >> Residual Norm = {} \n", iter_, normRes); - } - } - - void doIteration() { + void kernel() { // //--- Copy ghost values @@ -195,15 +148,13 @@ struct LinearPb2DJacobi : vt::Collection { iter_ += 1; std::copy(tcur_.begin(), tcur_.end(), told_.begin()); + } - // - // Compute the maximum entries among the rows on this object - // We do not take into account the "ghost" entries - // as they may be "out of date". - // - + double computeMaxNorm() { + // Compute the maximum entries among the rows on this object We do not take + // into account the "ghost" entries as they may be "out of date". double maxNorm = 0.0; - + size_t ldx = numRowsPerObject_ + 2; for (size_t iy = 1; iy <= numRowsPerObject_; ++iy) { for (size_t ix = 1; ix <= numRowsPerObject_; ++ix) { size_t node = ix + iy * ldx; @@ -211,81 +162,40 @@ struct LinearPb2DJacobi : vt::Collection { maxNorm = (maxNorm > std::fabs(val)) ? maxNorm : std::fabs(val); } } + return maxNorm; + } + void reduceMaxNorm(vt::Callback cb) { auto proxy = this->getCollectionProxy(); - proxy.reduce<&LinearPb2DJacobi::checkCompleteCB, vt::collective::MaxOp>( - proxy(0,0), maxNorm - ); + proxy.reduce(cb, computeMaxNorm()); } - struct VecMsg : vt::CollectionMessage { - using MessageParentType = vt::CollectionMessage; - vt_msg_serialize_required(); // stl vector - - VecMsg() = default; - VecMsg(IndexType const& in_index, const std::vector &ref) : - vt::CollectionMessage(), - from_index(in_index), val(ref) - { } - - template - void serialize(Serializer& s) { - MessageParentType::serialize(s); - s | from_index; - s | val; - } - - IndexType from_index; - std::vector val; - }; - - void exchange(VecMsg *msg) { - + void exchange(vt::Index2D from_index, std::vector val, std::size_t in_iter) { // Receive and treat the message from a neighboring object. - - if (this->getIndex().x() > msg->from_index.x()) { + vtAssert(iter_ == in_iter, "iters should match"); + if (this->getIndex().x() > from_index.x()) { const size_t ldx = numRowsPerObject_ + 2; - for (size_t jy = 0; jy < msg->val.size(); ++jy) { - this->told_[jy*ldx] = msg->val[jy]; + for (size_t jy = 0; jy < val.size(); ++jy) { + this->told_[jy*ldx] = val[jy]; } - msgReceived_ += 1; } - else if (this->getIndex().x() < msg->from_index.x()) { + else if (this->getIndex().x() < from_index.x()) { const size_t ldx = numRowsPerObject_ + 2; - for (size_t jy = 0; jy < msg->val.size(); ++jy) { - this->told_[numRowsPerObject_ + 1 + jy*ldx] = msg->val[jy]; + for (size_t jy = 0; jy < val.size(); ++jy) { + this->told_[numRowsPerObject_ + 1 + jy*ldx] = val[jy]; } - msgReceived_ += 1; } - else if (this->getIndex().y() > msg->from_index.y()) { - std::copy(msg->val.begin(), msg->val.end(), this->told_.begin()); - msgReceived_ += 1; + else if (this->getIndex().y() > from_index.y()) { + std::copy(val.begin(), val.end(), this->told_.begin()); } - else if (this->getIndex().y() < msg->from_index.y()) { - std::copy(msg->val.begin(), msg->val.end(), + else if (this->getIndex().y() < from_index.y()) { + std::copy(val.begin(), val.end(), &this->told_[(numRowsPerObject_ + 1)*(numRowsPerObject_ + 2)]); - msgReceived_ += 1; - } - - if (msgReceived_ == totalReceive_) { - msgReceived_ = 0; - doIteration(); } - } - void doIter(BlankMsg *msg) { - - // - // Treat the particular case of 1 object - // where no communication is needed. - // Without this treatment, the code would not iterate. - // - if (numObjsX_*numObjsY_ <= 1) { - doIteration(); - return; - } - //--------------------------------------- + void sendNeighbor(std::tuple direction) { + using Tuple = std::tuple; // // Routine to send information to a neighboring object @@ -296,41 +206,46 @@ struct LinearPb2DJacobi : vt::Collection { auto const x = idx.x(); auto const y = idx.y(); - if (x > 0) { - std::vector tcopy(numRowsPerObject_ + 2, 0.0); - for (size_t jy = 1; jy <= numRowsPerObject_; ++jy) - tcopy[jy] = told_[1 + jy * (numRowsPerObject_ + 2)]; - proxy(x-1, y).send(idx, tcopy); + if (direction == Tuple{-1, 0}) { + if (x > 0) { + std::vector tcopy(numRowsPerObject_ + 2, 0.0); + for (size_t jy = 1; jy <= numRowsPerObject_; ++jy) + tcopy[jy] = told_[1 + jy * (numRowsPerObject_ + 2)]; + proxy(x-1, y).send<&LinearPb2DJacobi::exchange>(idx, tcopy, iter_); + } } - if (y > 0) { - std::vector tcopy(numRowsPerObject_ + 2, 0.0); - for (size_t jx = 1; jx <= numRowsPerObject_; ++jx) - tcopy[jx] = told_[jx + (numRowsPerObject_ + 2)]; - proxy(x, y-1).send(idx, tcopy); + if (direction == Tuple{0, -1}) { + if (y > 0) { + std::vector tcopy(numRowsPerObject_ + 2, 0.0); + for (size_t jx = 1; jx <= numRowsPerObject_; ++jx) + tcopy[jx] = told_[jx + (numRowsPerObject_ + 2)]; + proxy(x, y-1).send<&LinearPb2DJacobi::exchange>(idx, tcopy, iter_); + } } - if (size_t(x) < numObjsX_ - 1) { - std::vector tcopy(numRowsPerObject_ + 2, 0.0); - for (size_t jy = 1; jy <= numRowsPerObject_; ++jy) { - tcopy[jy] = told_[numRowsPerObject_ + - jy * (numRowsPerObject_ + 2)]; + if (direction == Tuple{1, 0}) { + if (size_t(x) < numObjsX_ - 1) { + std::vector tcopy(numRowsPerObject_ + 2, 0.0); + for (size_t jy = 1; jy <= numRowsPerObject_; ++jy) { + tcopy[jy] = told_[numRowsPerObject_ + + jy * (numRowsPerObject_ + 2)]; + } + proxy(x+1, y).send<&LinearPb2DJacobi::exchange>(idx, tcopy, iter_); } - proxy(x+1, y).send(idx, tcopy); } - if (size_t(y) < numObjsY_ - 1) { - std::vector tcopy(numRowsPerObject_ + 2, 0.0); - for (size_t jx = 1; jx <= numRowsPerObject_; ++jx) - tcopy[jx] = told_[jx + numRowsPerObject_ * (numRowsPerObject_ + 2)]; - proxy(x, y+1).send(idx, tcopy); + if (direction == Tuple{0, 1}) { + if (size_t(y) < numObjsY_ - 1) { + std::vector tcopy(numRowsPerObject_ + 2, 0.0); + for (size_t jx = 1; jx <= numRowsPerObject_; ++jx) + tcopy[jx] = told_[jx + numRowsPerObject_ * (numRowsPerObject_ + 2)]; + proxy(x, y+1).send<&LinearPb2DJacobi::exchange>(idx, tcopy, iter_); + } } - } - - void init() { - + void initializeData() { //--- Each object will work with (numRowsPerObject_ + 2) unknowns //--- or (numRowsPerObject_ + 2) rows of the matrix size_t ldx = numRowsPerObject_ + 2, ldy = ldx; @@ -362,8 +277,6 @@ struct LinearPb2DJacobi : vt::Collection { } } - totalReceive_ = 4; - // //--- The unknowns correspond to the interior nodes //--- of a regular orthogonal grid on [0, 1] x [0, 1] @@ -375,55 +288,160 @@ struct LinearPb2DJacobi : vt::Collection { if (idx.x() == 0) { for (size_t jy = 0; jy < ldy; ++jy) tcur_[jy * ldy] = 0.0; - totalReceive_ -= 1; } if (idx.y() == 0) { for (size_t jx = 0; jx < ldx; ++jx) tcur_[jx] = 0.0; - totalReceive_ -= 1; } if (numObjsX_ == size_t(idx.x()) + 1) { for (size_t jy = 0; jy < ldy; ++jy) tcur_[jy * ldy + (ldx - 1)] = 0.0; - totalReceive_ -= 1; } if (numObjsY_ == size_t(idx.y()) + 1) { for (size_t jx = 0; jx < ldx; ++jx) tcur_[jx + (ldx - 1)*ldy] = 0.0; - totalReceive_ -= 1; } - std::copy(tcur_.begin(), tcur_.end(), told_.begin()); - } - void init(LPMsg* msg) { - - numObjsX_ = msg->numXObjs; - numObjsY_ = msg->numYObjs; - maxIter_ = msg->numIter; - objProxy_ = msg->objProxy; + void init( + size_t numXObjs, size_t numYObjs, size_t nRowPerObject, size_t iterMax, + NodeObjProxy objProxy + ) { + numRowsPerObject_ = nRowPerObject; + numObjsX_ = numXObjs; + numObjsY_ = numYObjs; + maxIter_ = iterMax; + objProxy_ = objProxy; // Initialize the starting vector - init(); + initializeData(); } }; -bool isWorkDone( vt::objgroup::proxy::Proxy const& proxy){ - auto const this_node = vt::theContext()->getNode(); - return proxy[this_node].invoke<&NodeObj::isWorkFinished>(); -} +struct NodeObj { + using ChainSetType = vt::messaging::CollectionChainSet; + + NodeObj( + vt::CollectionProxy in_proxy, std::size_t in_num_objs_x, + std::size_t in_num_objs_y, std::size_t in_max_iter + ) : proxy_(in_proxy), + num_objs_x_(in_num_objs_x), + num_objs_y_(in_num_objs_y), + max_iter_(in_max_iter) + { } + + void reducedNorm(double normRes) { + converged_ = normRes < default_tol; + if (vt::theContext()->getNode() == 0) { + fmt::print( + "## ITER {} >> Residual Norm = {}, conv={} \n", + cur_iter_, normRes, converged_ + ); + } + } + + void setup(vt::objgroup::proxy::Proxy in_proxy) { + chains_ = std::make_unique(proxy_); + this_proxy_ = in_proxy; + } + + void runToConvergence() { + using Tuple = std::tuple; + + vt::task::TaskCollective* prev_kernel = nullptr; + + auto iteration = chains_->createTaskRegion([&]{ + std::array dirs = { + Tuple{-1, 0}, Tuple{0,-1}, Tuple{1,0}, Tuple{0,1} + }; + std::map, vt::task::TaskCollective*> dep_dir; + + for (auto const& [x, y] : dirs) { + auto dep = chains_->taskCollective("exchange", [&](auto idx, auto t) { + if (prev_kernel) { + t->dependsOn(idx, prev_kernel); + + vt::Index2D idx_dir{idx.x() + x, idx.y() + y}; + + if (idx_dir.x() >= 0 and idx_dir.x() < int(num_objs_x_) and + idx_dir.y() >= 0 and idx_dir.y() < int(num_objs_y_)) { + t->dependsOn(idx_dir, prev_kernel); + } + } + return proxy_[idx].template send<&LinearPb2DJacobi::sendNeighbor>(Tuple{x,y}); + }); + dep_dir[Tuple{x,y}] = dep; + } + + prev_kernel = chains_->taskCollective("kernel", [&](auto idx, auto t) { + if (idx.x() != 0) { + t->dependsOn(vt::Index2D(idx.x() - 1, idx.y()), dep_dir[Tuple{1,0}]); + } + if (idx.y() != 0) { + t->dependsOn(vt::Index2D(idx.x(), idx.y() - 1), dep_dir[Tuple{0,1}]); + } + if (static_cast(idx.x()) != num_objs_x_ - 1) { + t->dependsOn(vt::Index2D(idx.x() + 1, idx.y()), dep_dir[Tuple{-1,0}]); + } + if (static_cast(idx.y()) != num_objs_y_ - 1) { + t->dependsOn(vt::Index2D(idx.x(), idx.y() + 1), dep_dir[Tuple{0,-1}]); + } + return proxy_[idx].template send<&LinearPb2DJacobi::kernel>(); + }); + }); + + while (not converged_ and cur_iter_ < max_iter_) { + iteration->enqueueTasks(); + + if (cur_iter_++ % check_conv_freq == 0) { + chains_->taskCollective("checkConv", [&](auto idx, auto t) { + t->dependsOn(idx, prev_kernel); + auto cb = vt::theCB()->makeBcast<&NodeObj::reducedNorm>(this_proxy_); + return proxy_[idx].template send<&LinearPb2DJacobi::reduceMaxNorm>(cb); + }); + + iteration->waitCollective(); + vt::thePhase()->nextPhaseCollective(); + } + } + + iteration->waitCollective(); + + if (vt::theContext()->getNode() == 0) { + if (not converged_) { + fmt::print("Maximum Number of Iterations Reached without convergence.\n"); + } else { + fmt::print("Convergence is reached at iteration {}.\n", cur_iter_); + } + } + + chains_->phaseDone(); + chains_ = nullptr; + } + +private: + vt::CollectionProxy proxy_; + std::size_t num_objs_x_ = 0; + std::size_t num_objs_y_ = 0; + std::size_t max_iter_ = 0; + std::size_t cur_iter_ = 0; + std::unique_ptr chains_; + bool converged_ = false; + vt::objgroup::proxy::Proxy this_proxy_; +}; int main(int argc, char** argv) { size_t numX_objs = default_num_objs; size_t numY_objs = default_num_objs; size_t maxIter = 10; + size_t numRows = default_nrow_object; std::string name(argv[0]); @@ -447,9 +465,20 @@ int main(int argc, char** argv) { numY_objs = (size_t) strtol(argv[2], nullptr, 10); maxIter = (size_t) strtol(argv[3], nullptr, 10); } + else if (argc == 5 or argc == 6) { + numX_objs = (size_t) strtol(argv[1], nullptr, 10); + numY_objs = (size_t) strtol(argv[2], nullptr, 10); + maxIter = (size_t) strtol(argv[3], nullptr, 10); + numRows = (size_t) strtol(argv[4], nullptr, 10); + if (argc == 6) { + check_conv_freq = (size_t) strtol(argv[5], nullptr, 10); + } + } else { fmt::print( - stderr, "usage: {} \n", + stderr, + "usage: {} " + " \n", name ); return 1; @@ -457,7 +486,6 @@ int main(int argc, char** argv) { } /* --- Print information about the simulation */ - if (this_node == 0) { fmt::print( stdout, "\n - Solve the linear system for the Laplacian with homogeneous Dirichlet" @@ -475,10 +503,6 @@ int main(int argc, char** argv) { fmt::print(stdout, "\n"); } - // Object group of all nodes that take part in computation - // Used to determine whether the computation is finished - auto grp_proxy = vt::theObjGroup()->makeCollective("examples_jacobi2d"); - // Create the decomposition into objects using BaseIndexType = typename vt::Index2D::DenseIndexType; auto range = vt::Index2D( @@ -486,25 +510,25 @@ int main(int argc, char** argv) { static_cast(numY_objs) ); - auto col_proxy = vt::makeCollection("examples_jacobi2d") + auto col_proxy = vt::makeCollection("jacobi2d") .bounds(range) .bulkInsert() .wait(); - vt::runInEpochCollective([col_proxy, grp_proxy, numX_objs, numY_objs, maxIter] { - col_proxy.broadcastCollective( - numX_objs, numY_objs, maxIter, grp_proxy + // Object group of all nodes that take part in computation + // Used to determine whether the computation is finished + auto grp_proxy = vt::theObjGroup()->makeCollective( + "jacobi2d", col_proxy, numX_objs, numY_objs, maxIter + ); + + vt::runInEpochCollective([=] { + col_proxy.broadcastCollective<&LinearPb2DJacobi::init>( + numX_objs, numY_objs, numRows, maxIter, grp_proxy ); }); - while (!isWorkDone(grp_proxy)) { - vt::runInEpochCollective([col_proxy] { - col_proxy.broadcastCollective< - LinearPb2DJacobi::BlankMsg, &LinearPb2DJacobi::doIter>(); - }); - - vt::thePhase()->nextPhaseCollective(); - } + grp_proxy.get()->setup(grp_proxy); + grp_proxy.get()->runToConvergence(); vt::finalize(); diff --git a/examples/collection/jacobi2d_vt_sync.cc b/examples/collection/jacobi2d_vt_sync.cc new file mode 100644 index 0000000000..74ed717195 --- /dev/null +++ b/examples/collection/jacobi2d_vt_sync.cc @@ -0,0 +1,521 @@ +/* +//@HEADER +// ***************************************************************************** +// +// jacobi2d_vt.cc +// DARMA/vt => Virtual Transport +// +// Copyright 2019-2021 National Technology & Engineering Solutions of Sandia, LLC +// (NTESS). Under the terms of Contract DE-NA0003525 with NTESS, the U.S. +// Government retains certain rights in this software. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are met: +// +// * Redistributions of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistributions in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * Neither the name of the copyright holder nor the names of its +// contributors may be used to endorse or promote products derived from this +// software without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE +// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR +// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF +// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS +// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN +// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) +// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE +// POSSIBILITY OF SUCH DAMAGE. +// +// Questions? Contact darma@sandia.gov +// +// ***************************************************************************** +//@HEADER +*/ + +#include + +#include +#include +#include + +/// [Jacobi2D example] + +// +// This code applies a few steps of the Jacobi iteration to +// the linear system A x = 0 +// where is a banded symmetric positive definite matrix. +// The initial guess for x is a made-up non-zero vector. +// The exact solution is the vector 0. +// +// The matrix A is square and invertible. +// The number of rows is ((number of objects) * (number of rows per object)) +// +// Such a matrix A is obtained when using 2nd-order finite difference +// for discretizing +// +// -d^2 u / dx^2 -d^2 u / dy^2 = f on [0, 1] x [0, 1] +// +// with homogeneous Dirichlet condition +// +// u = 0 on the boundary of [0, 1] x [0, 1] +// +// using a uniform grid with grid size +// +// 1 / ((number of objects) * (number of rows per object) + 1) +// + + +static constexpr std::size_t const default_nrow_object = 8; +static constexpr std::size_t const default_num_objs = 4; +static constexpr double const default_tol = 1.0e-02; + +struct NodeObj { + bool is_finished_ = false; + void workFinishedHandler() { is_finished_ = true; } + bool isWorkFinished() { return is_finished_; } +}; +using NodeObjProxy = vt::objgroup::proxy::Proxy; + +struct LinearPb2DJacobi : vt::Collection { + +private: + + std::vector tcur_, told_; + std::vector rhs_; + size_t iter_ = 0; + size_t msgReceived_ = 0, totalReceive_ = 0; + size_t numObjsX_ = 1, numObjsY_ = 1; + size_t numRowsPerObject_ = default_nrow_object; + size_t maxIter_ = 5; + NodeObjProxy objProxy_; + +public: + + LinearPb2DJacobi() + : tcur_(), told_(), rhs_(), iter_(0), + msgReceived_(0), totalReceive_(0), + numObjsX_(1), numObjsY_(1), + numRowsPerObject_(default_nrow_object), + maxIter_(5) + { } + + struct LPMsg : vt::CollectionMessage { + + size_t numXObjs = 0; + size_t numYObjs = 0; + size_t numRows = 0; + size_t numIter = 0; + NodeObjProxy objProxy; + + LPMsg() = default; + + LPMsg(const size_t nx, const size_t ny, const size_t rows, const size_t nref, NodeObjProxy proxy) + : numXObjs(nx), numYObjs(ny), numRows(rows), numIter(nref), objProxy(proxy) + { } + + }; + + + void checkCompleteCB(double const normRes) { + // + // Only one object for the reduction will visit + // this function + // + + auto const iter_max_reached = iter_ > maxIter_; + auto const norm_res_done = normRes < default_tol; + + if (iter_max_reached or norm_res_done) { + auto const to_print = iter_max_reached ? + "\n Maximum Number of Iterations Reached. \n\n" : + fmt::format("\n Max-Norm Residual Reduced by {} \n\n", default_tol); + + fmt::print(to_print); + + // Notify all nodes that computation is finished + objProxy_.broadcast<&NodeObj::workFinishedHandler>(); + } else { + fmt::print(" ## ITER {} >> Residual Norm = {} \n", iter_, normRes); + } + } + + void doIteration() { + + // + //--- Copy ghost values + // + + size_t ldx = numRowsPerObject_ + 2; + size_t ldy = numRowsPerObject_ + 2; + + for (size_t jx = 0; jx < ldx; ++jx) + tcur_[jx] = told_[jx]; + + for (size_t jx = 0; jx < ldx; ++jx) + tcur_[jx + (ldy-1) * ldx] = told_[jx + (ldy-1) * ldx]; + + for (size_t jy = 0; jy < ldy; ++jy) + tcur_[jy * ldx] = told_[jy * ldx]; + + for (size_t jy = 0; jy < ldy; ++jy) + tcur_[ldx-1 + jy * ldx] = told_[ldx-1 + jy * ldx]; + + // + //--- Update my row values + // + + for (size_t iy = 1; iy <= numRowsPerObject_; ++iy) { + for (size_t ix = 1; ix <= numRowsPerObject_; ++ix) { + // + //---- Jacobi iteration step for + //---- A banded matrix for the 5-point stencil + //---- [ 0.0 -1.0 0.0] + //---- [-1.0 4.0 -1.0] + //---- [ 0.0 -1.0 0.0] + //---- rhs_ right hand side vector + // + size_t node = ix + iy * ldx; + tcur_[node] = 0.25 * (rhs_[node] + + told_[node - 1] + told_[node + 1] + + told_[node - ldx] + told_[node + ldx]); + } + } + + iter_ += 1; + + std::copy(tcur_.begin(), tcur_.end(), told_.begin()); + + // + // Compute the maximum entries among the rows on this object + // We do not take into account the "ghost" entries + // as they may be "out of date". + // + + double maxNorm = 0.0; + + for (size_t iy = 1; iy <= numRowsPerObject_; ++iy) { + for (size_t ix = 1; ix <= numRowsPerObject_; ++ix) { + size_t node = ix + iy * ldx; + double val = tcur_[node]; + maxNorm = (maxNorm > std::fabs(val)) ? maxNorm : std::fabs(val); + } + } + + auto proxy = this->getCollectionProxy(); + proxy.reduce<&LinearPb2DJacobi::checkCompleteCB, vt::collective::MaxOp>( + proxy(0,0), maxNorm + ); + } + + struct VecMsg : vt::CollectionMessage { + using MessageParentType = vt::CollectionMessage; + vt_msg_serialize_required(); // stl vector + + VecMsg() = default; + VecMsg(IndexType const& in_index, const std::vector &ref) : + vt::CollectionMessage(), + from_index(in_index), val(ref) + { } + + template + void serialize(Serializer& s) { + MessageParentType::serialize(s); + s | from_index; + s | val; + } + + IndexType from_index; + std::vector val; + }; + + void exchange(VecMsg *msg) { + + // Receive and treat the message from a neighboring object. + + if (this->getIndex().x() > msg->from_index.x()) { + const size_t ldx = numRowsPerObject_ + 2; + for (size_t jy = 0; jy < msg->val.size(); ++jy) { + this->told_[jy*ldx] = msg->val[jy]; + } + msgReceived_ += 1; + } + else if (this->getIndex().x() < msg->from_index.x()) { + const size_t ldx = numRowsPerObject_ + 2; + for (size_t jy = 0; jy < msg->val.size(); ++jy) { + this->told_[numRowsPerObject_ + 1 + jy*ldx] = msg->val[jy]; + } + msgReceived_ += 1; + } + else if (this->getIndex().y() > msg->from_index.y()) { + std::copy(msg->val.begin(), msg->val.end(), this->told_.begin()); + msgReceived_ += 1; + } + else if (this->getIndex().y() < msg->from_index.y()) { + std::copy(msg->val.begin(), msg->val.end(), + &this->told_[(numRowsPerObject_ + 1)*(numRowsPerObject_ + 2)]); + msgReceived_ += 1; + } + + if (msgReceived_ == totalReceive_) { + msgReceived_ = 0; + doIteration(); + } + + } + + void doIter() { + + // + // Treat the particular case of 1 object + // where no communication is needed. + // Without this treatment, the code would not iterate. + // + if (numObjsX_*numObjsY_ <= 1) { + doIteration(); + return; + } + //--------------------------------------- + + // + // Routine to send information to a neighboring object + // + + auto proxy = this->getCollectionProxy(); + auto idx = this->getIndex(); + auto const x = idx.x(); + auto const y = idx.y(); + + if (x > 0) { + std::vector tcopy(numRowsPerObject_ + 2, 0.0); + for (size_t jy = 1; jy <= numRowsPerObject_; ++jy) + tcopy[jy] = told_[1 + jy * (numRowsPerObject_ + 2)]; + proxy(x-1, y).send(idx, tcopy); + } + + if (y > 0) { + std::vector tcopy(numRowsPerObject_ + 2, 0.0); + for (size_t jx = 1; jx <= numRowsPerObject_; ++jx) + tcopy[jx] = told_[jx + (numRowsPerObject_ + 2)]; + proxy(x, y-1).send(idx, tcopy); + } + + if (size_t(x) < numObjsX_ - 1) { + std::vector tcopy(numRowsPerObject_ + 2, 0.0); + for (size_t jy = 1; jy <= numRowsPerObject_; ++jy) { + tcopy[jy] = told_[numRowsPerObject_ + + jy * (numRowsPerObject_ + 2)]; + } + proxy(x+1, y).send(idx, tcopy); + } + + if (size_t(y) < numObjsY_ - 1) { + std::vector tcopy(numRowsPerObject_ + 2, 0.0); + for (size_t jx = 1; jx <= numRowsPerObject_; ++jx) + tcopy[jx] = told_[jx + numRowsPerObject_ * (numRowsPerObject_ + 2)]; + proxy(x, y+1).send(idx, tcopy); + } + + } + + + void init() { + + //--- Each object will work with (numRowsPerObject_ + 2) unknowns + //--- or (numRowsPerObject_ + 2) rows of the matrix + size_t ldx = numRowsPerObject_ + 2, ldy = ldx; + + size_t vecSize = ldx * ldy; + tcur_.assign(vecSize, 0.0); + told_.assign(vecSize, 0.0); + rhs_.assign(vecSize, 0.0); + + // + // Set the initial vector to the values of + // a "high-frequency" function + // + + double hx = 1.0 / (numRowsPerObject_ * numObjsX_ + 1.0); + double hy = 1.0 / (numRowsPerObject_ * numObjsY_ + 1.0); + + size_t maxNObjs = (size_t) std::max(numObjsX_, numObjsY_); + int nf = 3 * int(numRowsPerObject_ * maxNObjs + 1) / 4; + + auto idx = this->getIndex(); + + for (size_t iy = 0; iy < ldy; ++iy) { + for (size_t ix = 0; ix < ldx; ++ix) { + double x0 = ( numRowsPerObject_ * idx.x() + ix) * hx; + double y0 = ( numRowsPerObject_ * idx.y() + iy) * hy; + size_t node = ix + iy * ldx; + tcur_[node] = sin(nf * M_PI * (x0 * x0 + y0 * y0)); + } + } + + totalReceive_ = 4; + + // + //--- The unknowns correspond to the interior nodes + //--- of a regular orthogonal grid on [0, 1] x [0, 1] + //--- The total number of grid points in X-direction is + //--- (numRowsPerObject_ * numObjsX_) + 2 + //--- The total number of grid points in Y-direction is + //--- (numRowsPerObject_ * numObjsY_) + 2 + // + if (idx.x() == 0) { + for (size_t jy = 0; jy < ldy; ++jy) + tcur_[jy * ldy] = 0.0; + totalReceive_ -= 1; + } + + if (idx.y() == 0) { + for (size_t jx = 0; jx < ldx; ++jx) + tcur_[jx] = 0.0; + totalReceive_ -= 1; + } + + if (numObjsX_ == size_t(idx.x()) + 1) { + for (size_t jy = 0; jy < ldy; ++jy) + tcur_[jy * ldy + (ldx - 1)] = 0.0; + totalReceive_ -= 1; + } + + if (numObjsY_ == size_t(idx.y()) + 1) { + for (size_t jx = 0; jx < ldx; ++jx) + tcur_[jx + (ldx - 1)*ldy] = 0.0; + totalReceive_ -= 1; + } + + std::copy(tcur_.begin(), tcur_.end(), told_.begin()); + + } + + + void init(LPMsg* msg) { + + numObjsX_ = msg->numXObjs; + numObjsY_ = msg->numYObjs; + maxIter_ = msg->numIter; + objProxy_ = msg->objProxy; + numRowsPerObject_ = msg->numRows; + + // Initialize the starting vector + init(); + } + +}; + +bool isWorkDone( vt::objgroup::proxy::Proxy const& proxy){ + auto const this_node = vt::theContext()->getNode(); + return proxy[this_node].invoke<&NodeObj::isWorkFinished>(); +} + +int main(int argc, char** argv) { + + size_t numX_objs = default_num_objs; + size_t numY_objs = default_num_objs; + size_t maxIter = 10; + size_t numRows = default_nrow_object; + + std::string name(argv[0]); + + vt::initialize(argc, argv); + + vt::NodeType this_node = vt::theContext()->getNode(); + + if (argc == 1) { + if (this_node == 0) { + fmt::print( + stderr, "{}: using default arguments since none provided\n", name + ); + } + } else { + if (argc == 3) { + numX_objs = (size_t) strtol(argv[1], nullptr, 10); + numY_objs = (size_t) strtol(argv[2], nullptr, 10); + } + else if (argc == 4) { + numX_objs = (size_t) strtol(argv[1], nullptr, 10); + numY_objs = (size_t) strtol(argv[2], nullptr, 10); + maxIter = (size_t) strtol(argv[3], nullptr, 10); + } + else if (argc == 5) { + numX_objs = (size_t) strtol(argv[1], nullptr, 10); + numY_objs = (size_t) strtol(argv[2], nullptr, 10); + maxIter = (size_t) strtol(argv[3], nullptr, 10); + numRows = (size_t) strtol(argv[4], nullptr, 10); + } + else { + fmt::print( + stderr, + "usage: {} " + " \n", + name + ); + return 1; + } + } + + /* --- Print information about the simulation */ + + if (this_node == 0) { + fmt::print( + stdout, "\n - Solve the linear system for the Laplacian with homogeneous Dirichlet" + " on [0, 1] x [0, 1]\n" + ); + fmt::print(stdout, " - Second-order centered finite difference\n"); + fmt::print( + stdout, " - Uniform grid with ({} x {} = {}) points in the x-direction and " + " ({} x {} = {}) points in the y-direction\n", + numX_objs, default_nrow_object, numX_objs * default_nrow_object, + numY_objs, default_nrow_object, numY_objs * default_nrow_object + ); + fmt::print(stdout, " - Maximum number of iterations {}\n", maxIter); + fmt::print(stdout, " - Convergence tolerance {}\n", default_tol); + fmt::print(stdout, "\n"); + } + + // Object group of all nodes that take part in computation + // Used to determine whether the computation is finished + auto grp_proxy = vt::theObjGroup()->makeCollective("examples_jacobi2d"); + + // Create the decomposition into objects + using BaseIndexType = typename vt::Index2D::DenseIndexType; + auto range = vt::Index2D( + static_cast(numX_objs), + static_cast(numY_objs) + ); + + auto col_proxy = vt::makeCollection("examples_jacobi2d") + .bounds(range) + .bulkInsert() + .wait(); + + vt::runInEpochCollective([=] { + col_proxy.broadcastCollective( + numX_objs, numY_objs, numRows, maxIter, grp_proxy + ); + }); + + while (!isWorkDone(grp_proxy)) { + vt::runInEpochCollective([col_proxy] { + col_proxy.broadcastCollective<&LinearPb2DJacobi::doIter>(); + }); + + vt::thePhase()->nextPhaseCollective(); + } + + vt::finalize(); + + return 0; + +} +/// [Jacobi2D example]