-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathaugment.py
89 lines (78 loc) · 3.79 KB
/
augment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
from torchvision import transforms
import random
import numpy as np
class RandAug:
"""Randomly chosen image augmentations."""
def __init__(self, img_size, choice=None):
# Augmentation options
self.trans = ['identity', 'rotate', 'color', 'sharpness', 'blur', 'padding' ,'perspective']
self.img_size = img_size
self.choice = choice
def __call__(self, img):
if self.choice == None:
# Weights set 40% probability for the 'identity' augmentation choice
self.choice = random.choices(self.trans, weights=(40, 10, 10, 10, 10, 10, 10))[0]
if self.choice == 'identity':
trans = transforms.Compose([
transforms.Resize((self.img_size,self.img_size)),
transforms.ToTensor()
])
img = trans(img)
elif self.choice == 'rotate':
degrees = random.uniform(0, 180)
rand_fill = random.choice([0,1])
trans = transforms.Compose([
transforms.Resize((self.img_size,self.img_size)),
transforms.ToTensor(),
transforms.RandomRotation(degrees, expand=True, fill=rand_fill),
transforms.Resize((self.img_size,self.img_size))
])
img = trans(img)
elif self.choice == 'color':
rand_brightness = random.uniform(0, 0.3)
rand_hue = random.uniform(0, 0.5)
rand_contrast = random.uniform(0, 0.5)
rand_saturation = random.uniform(0, 0.5)
trans = transforms.Compose([
transforms.Resize((self.img_size,self.img_size)),
transforms.ToTensor(),
transforms.ColorJitter(brightness=rand_brightness, contrast=rand_contrast, saturation=rand_saturation, hue=rand_hue)
])
img = trans(img)
elif self.choice=='sharpness':
sharpness = 1+(np.random.exponential()/2)
trans = transforms.Compose([
transforms.Resize((self.img_size,self.img_size)),
transforms.ToTensor(),
transforms.RandomAdjustSharpness(sharpness, p=1)
])
img = trans(img)
elif self.choice=='blur':
kernel = random.choice([1,3,5])
trans = transforms.Compose([
transforms.Resize((self.img_size,self.img_size)),
transforms.ToTensor(),
transforms.GaussianBlur(kernel, sigma=(0.1, 2.0))
])
img = trans(img)
elif self.choice=='padding':
pad = random.choice([3,10,25])
rand_fill = random.choice([0,1])
trans = transforms.Compose([
transforms.Resize((self.img_size,self.img_size)),
transforms.ToTensor(),
transforms.Pad(pad, fill=rand_fill, padding_mode='constant'),
transforms.Resize((self.img_size,self.img_size))
])
img = trans(img)
elif self.choice=='perspective':
scale = random.uniform(0.1, 0.5)
rand_fill = random.choice([0,1])
trans = transforms.Compose([
transforms.Resize((self.img_size,self.img_size)),
transforms.ToTensor(),
transforms.RandomPerspective(distortion_scale=scale, p=1.0, fill=rand_fill),
transforms.Resize((self.img_size,self.img_size))
])
img = trans(img)
return img