-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathdialogue_manager.py
94 lines (80 loc) · 4.06 KB
/
dialogue_manager.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
from rec_action.rec_actions_classifier import RecActionsClassifier
from state.state_manager import StateManager
from user_intent.classifiers.user_intents_classifier import UserIntentsClassifier
from rec_action.rec_action import RecAction
from intelligence.llm_wrapper import LLMWrapper
from state.message import Message
import logging
logger = logging.getLogger('dialogue_manager')
class DialogueManager:
"""
Class responsible for providing recommender's response by classifying user intent, update state,
classify recommender action, and generating the response.
:param state_manager: object to keep track of the current state of the conversation
:param user_intents_classifier: object used to classify user intent
:param rec_actions_classifier: object used to classify recommender actions
:param llm_wrapper: object to make request to LLM
:param hard_coded_responses: list that defines all hard coded responses
"""
state_manager: StateManager
_user_intents_classifier: UserIntentsClassifier
_rec_actions_classifier: RecActionsClassifier
_default_response: str
_llm_wrapper: LLMWrapper
_hard_coded_responses: list[dict]
def __init__(self, state_manager: StateManager, user_intents_classifier: UserIntentsClassifier,
rec_actions_classifier: RecActionsClassifier, llm_wrapper: LLMWrapper, hard_coded_responses: list[dict]):
self.state_manager = state_manager
self._user_intents_classifier = user_intents_classifier
self._rec_actions_classifier = rec_actions_classifier
self._hard_coded_responses = hard_coded_responses
self._llm_wrapper = llm_wrapper
def get_response(self, user_input: str) -> str:
"""
Generate and return recommender's response by classifying user intent, update state,
classify recommender action, and generating the response.
:param user_input: current user's input
:return: response from the recommender
"""
logger.debug(f'user_input="{user_input}"')
message = Message("user", user_input)
self.state_manager.update_conv_history(message)
user_intents = self._user_intents_classifier.classify(
self.state_manager)
logger.debug(f'user_intents={str(user_intents)}')
if not user_intents:
# If not classified into any user intent, recommender give default response.
rec_response = ""
for response_dict in self._hard_coded_responses:
if response_dict['action'] == 'DefaultResponse':
rec_response = response_dict['response']
self.state_manager.store_response(rec_response)
logger.warning(
f"User input, \"{user_input}\" was not classified to any of the user intent.")
else:
self.state_manager.store_user_intents(user_intents)
rec_actions = self._rec_actions_classifier.classify(
self.state_manager)
logger.debug(f'rec_actions={str(rec_actions)}')
if not rec_actions:
rec_response = self._default_response
self.state_manager.store_response(rec_response)
logger.warning(
f"User input, \"{user_input}\" was not classified to any of the recommender action.")
else:
self.state_manager.store_rec_actions(rec_actions)
rec_response = self._generate_response(rec_actions)
logger.debug(f'rec_response="{rec_response}"')
logger.debug(f"state_manager={str(self.state_manager)}")
return rec_response
def _generate_response(self, rec_actions: list[RecAction]) -> str:
"""
Helper function to generate recommender's response.
:param rec_actions: list of recommender actions
:return: response from the recommender
"""
# Note only works for 1 rec action for now
for action in rec_actions:
resp = action.get_response(self.state_manager)
self.state_manager.store_response(resp)
return resp