-
Notifications
You must be signed in to change notification settings - Fork 97
/
data.py
256 lines (214 loc) · 10.4 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import json
import os
import os.path
import re
from PIL import Image
import h5py
import torch
import torch.utils.data as data
import torchvision.transforms as transforms
import config
import utils
def get_loader(train=False, val=False, test=False):
""" Returns a data loader for the desired split """
assert train + val + test == 1, 'need to set exactly one of {train, val, test} to True'
split = VQA(
utils.path_for(train=train, val=val, test=test, question=True),
utils.path_for(train=train, val=val, test=test, answer=True),
config.preprocessed_path,
answerable_only=train,
)
loader = torch.utils.data.DataLoader(
split,
batch_size=config.batch_size,
shuffle=train, # only shuffle the data in training
pin_memory=True,
num_workers=config.data_workers,
collate_fn=collate_fn,
)
return loader
def collate_fn(batch):
# put question lengths in descending order so that we can use packed sequences later
batch.sort(key=lambda x: x[-1], reverse=True)
return data.dataloader.default_collate(batch)
class VQA(data.Dataset):
""" VQA dataset, open-ended """
def __init__(self, questions_path, answers_path, image_features_path, answerable_only=False):
super(VQA, self).__init__()
with open(questions_path, 'r') as fd:
questions_json = json.load(fd)
with open(answers_path, 'r') as fd:
answers_json = json.load(fd)
with open(config.vocabulary_path, 'r') as fd:
vocab_json = json.load(fd)
self._check_integrity(questions_json, answers_json)
# vocab
self.vocab = vocab_json
self.token_to_index = self.vocab['question']
self.answer_to_index = self.vocab['answer']
# q and a
self.questions = list(prepare_questions(questions_json))
self.answers = list(prepare_answers(answers_json))
self.questions = [self._encode_question(q) for q in self.questions]
self.answers = [self._encode_answers(a) for a in self.answers]
# v
self.image_features_path = image_features_path
self.coco_id_to_index = self._create_coco_id_to_index()
self.coco_ids = [q['image_id'] for q in questions_json['questions']]
# only use questions that have at least one answer?
self.answerable_only = answerable_only
if self.answerable_only:
self.answerable = self._find_answerable()
@property
def max_question_length(self):
if not hasattr(self, '_max_length'):
self._max_length = max(map(len, self.questions))
return self._max_length
@property
def num_tokens(self):
return len(self.token_to_index) + 1 # add 1 for <unknown> token at index 0
def _create_coco_id_to_index(self):
""" Create a mapping from a COCO image id into the corresponding index into the h5 file """
with h5py.File(self.image_features_path, 'r') as features_file:
coco_ids = features_file['ids'][()]
coco_id_to_index = {id: i for i, id in enumerate(coco_ids)}
return coco_id_to_index
def _check_integrity(self, questions, answers):
""" Verify that we are using the correct data """
qa_pairs = list(zip(questions['questions'], answers['annotations']))
assert all(q['question_id'] == a['question_id'] for q, a in qa_pairs), 'Questions not aligned with answers'
assert all(q['image_id'] == a['image_id'] for q, a in qa_pairs), 'Image id of question and answer don\'t match'
assert questions['data_type'] == answers['data_type'], 'Mismatched data types'
assert questions['data_subtype'] == answers['data_subtype'], 'Mismatched data subtypes'
def _find_answerable(self):
""" Create a list of indices into questions that will have at least one answer that is in the vocab """
answerable = []
for i, answers in enumerate(self.answers):
answer_has_index = len(answers.nonzero()) > 0
# store the indices of anything that is answerable
if answer_has_index:
answerable.append(i)
return answerable
def _encode_question(self, question):
""" Turn a question into a vector of indices and a question length """
vec = torch.zeros(self.max_question_length).long()
for i, token in enumerate(question):
index = self.token_to_index.get(token, 0)
vec[i] = index
return vec, len(question)
def _encode_answers(self, answers):
""" Turn an answer into a vector """
# answer vec will be a vector of answer counts to determine which answers will contribute to the loss.
# this should be multiplied with 0.1 * negative log-likelihoods that a model produces and then summed up
# to get the loss that is weighted by how many humans gave that answer
answer_vec = torch.zeros(len(self.answer_to_index))
for answer in answers:
index = self.answer_to_index.get(answer)
if index is not None:
answer_vec[index] += 1
return answer_vec
def _load_image(self, image_id):
""" Load an image """
if not hasattr(self, 'features_file'):
# Loading the h5 file has to be done here and not in __init__ because when the DataLoader
# forks for multiple works, every child would use the same file object and fail
# Having multiple readers using different file objects is fine though, so we just init in here.
self.features_file = h5py.File(self.image_features_path, 'r')
index = self.coco_id_to_index[image_id]
dataset = self.features_file['features']
img = dataset[index].astype('float32')
return torch.from_numpy(img)
def __getitem__(self, item):
if self.answerable_only:
# change of indices to only address answerable questions
item = self.answerable[item]
q, q_length = self.questions[item]
a = self.answers[item]
image_id = self.coco_ids[item]
v = self._load_image(image_id)
# since batches are re-ordered for PackedSequence's, the original question order is lost
# we return `item` so that the order of (v, q, a) triples can be restored if desired
# without shuffling in the dataloader, these will be in the order that they appear in the q and a json's.
return v, q, a, item, q_length
def __len__(self):
if self.answerable_only:
return len(self.answerable)
else:
return len(self.questions)
# this is used for normalizing questions
_special_chars = re.compile('[^a-z0-9 ]*')
# these try to emulate the original normalization scheme for answers
_period_strip = re.compile(r'(?!<=\d)(\.)(?!\d)')
_comma_strip = re.compile(r'(\d)(,)(\d)')
_punctuation_chars = re.escape(r';/[]"{}()=+\_-><@`,?!')
_punctuation = re.compile(r'([{}])'.format(re.escape(_punctuation_chars)))
_punctuation_with_a_space = re.compile(r'(?<= )([{0}])|([{0}])(?= )'.format(_punctuation_chars))
def prepare_questions(questions_json):
""" Tokenize and normalize questions from a given question json in the usual VQA format. """
questions = [q['question'] for q in questions_json['questions']]
for question in questions:
question = question.lower()[:-1]
yield question.split(' ')
def prepare_answers(answers_json):
""" Normalize answers from a given answer json in the usual VQA format. """
answers = [[a['answer'] for a in ans_dict['answers']] for ans_dict in answers_json['annotations']]
# The only normalization that is applied to both machine generated answers as well as
# ground truth answers is replacing most punctuation with space (see [0] and [1]).
# Since potential machine generated answers are just taken from most common answers, applying the other
# normalizations is not needed, assuming that the human answers are already normalized.
# [0]: http://visualqa.org/evaluation.html
# [1]: https://github.com/VT-vision-lab/VQA/blob/3849b1eae04a0ffd83f56ad6f70ebd0767e09e0f/PythonEvaluationTools/vqaEvaluation/vqaEval.py#L96
def process_punctuation(s):
# the original is somewhat broken, so things that look odd here might just be to mimic that behaviour
# this version should be faster since we use re instead of repeated operations on str's
if _punctuation.search(s) is None:
return s
s = _punctuation_with_a_space.sub('', s)
if re.search(_comma_strip, s) is not None:
s = s.replace(',', '')
s = _punctuation.sub(' ', s)
s = _period_strip.sub('', s)
return s.strip()
for answer_list in answers:
yield list(map(process_punctuation, answer_list))
class CocoImages(data.Dataset):
""" Dataset for MSCOCO images located in a folder on the filesystem """
def __init__(self, path, transform=None):
super(CocoImages, self).__init__()
self.path = path
self.id_to_filename = self._find_images()
self.sorted_ids = sorted(self.id_to_filename.keys()) # used for deterministic iteration order
print('found {} images in {}'.format(len(self), self.path))
self.transform = transform
def _find_images(self):
id_to_filename = {}
for filename in os.listdir(self.path):
if not filename.endswith('.jpg'):
continue
id_and_extension = filename.split('_')[-1]
id = int(id_and_extension.split('.')[0])
id_to_filename[id] = filename
return id_to_filename
def __getitem__(self, item):
id = self.sorted_ids[item]
path = os.path.join(self.path, self.id_to_filename[id])
img = Image.open(path).convert('RGB')
if self.transform is not None:
img = self.transform(img)
return id, img
def __len__(self):
return len(self.sorted_ids)
class Composite(data.Dataset):
""" Dataset that is a composite of several Dataset objects. Useful for combining splits of a dataset. """
def __init__(self, *datasets):
self.datasets = datasets
def __getitem__(self, item):
current = self.datasets[0]
for d in self.datasets:
if item < len(d):
return d[item]
item -= len(d)
else:
raise IndexError('Index too large for composite dataset')
def __len__(self):
return sum(map(len, self.datasets))