-
Notifications
You must be signed in to change notification settings - Fork 18
/
trt_yolo3_module_1batch.py
219 lines (187 loc) · 8.62 KB
/
trt_yolo3_module_1batch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import torch
import numpy as np
import tensorrt as trt
import pycuda.driver as cuda
import pycuda.autoinit
import time
from base_module import BaseModule
from util import *
from alpha_yolo3_module_drawing import drawing
# from data_processing import PreprocessYOLO
import sys, os
sys.path.insert(1, os.path.join(sys.path[0], ".."))
import common
TRT_LOGGER = trt.Logger()
def get_engine(engine_file_path):
if os.path.exists(engine_file_path):
print("Reading engine from file {}".format(engine_file_path))
with open(engine_file_path, "rb") as f, trt.Runtime(TRT_LOGGER) as runtime:
return runtime.deserialize_cuda_engine(f.read())
else:
print("TRT file not found")
def prep_image(orig_im, inp_dim):
dim = orig_im.shape[1], orig_im.shape[0]
img = (letterbox_image(orig_im, (inp_dim, inp_dim)))
img_ = img[:, :, ::-1].transpose((2, 0, 1)).copy() #(3 608 608)
img_ = torch.from_numpy(img_).float().div(255.0).unsqueeze(0)
img_ = img_.numpy()
return img_, orig_im, dim
def letterbox_image(img, inp_dim):
'''resize image with unchanged aspect ratio using padding'''
img_w, img_h = img.shape[1], img.shape[0]
w, h = inp_dim
new_w = int(img_w * min(w / img_w, h / img_h))
new_h = int(img_h * min(w / img_w, h / img_h))
resized_image = cv2.resize(img, (new_w, new_h), interpolation=cv2.INTER_CUBIC)
canvas = np.full((inp_dim[1], inp_dim[0], 3), 128)
canvas[(h - new_h) // 2:(h - new_h) // 2 + new_h, (w - new_w) // 2:(w - new_w) // 2 + new_w, :] = resized_image
return canvas
class trt_yolo3_module(BaseModule):
def __init__(self, init_dict):
a = torch.cuda.FloatTensor() #pytorch必须首先占用部分CUDA
builder = trt.Builder(TRT_LOGGER)
builder.fp16_mode = True
builder.strict_type_constraints = True
self.trt_file = init_dict['trt']
self.use_cuda = init_dict['use_cuda']
self.inp_dim = 608
self.num_classes = 80
self.output_shapes = [(1, 255, 19, 19), (1, 255, 38, 38), (1, 255, 76, 76)] #yolo3-608
self.yolo_anchors = [[(116, 90), (156, 198), (373, 326)],
[(30, 61), (62, 45), (59, 119)],
[(10, 13), (16, 30), (33, 23)]]
self.engine = get_engine(self.trt_file)
self.inputs, self.outputs, self.bindings, self.stream = common.allocate_buffers(self.engine)
self.context = self.engine.create_execution_context()
def preparing(self,orig_img_list):
img = []
orig_img = []
im_name = []
im_dim_list = []
batch = 1
for im in orig_img_list:
im_name_k = ''
img_k, orig_img_k, im_dim_list_k = prep_image(im, self.inp_dim)
img.append(img_k)
orig_img.append(orig_img_k)
im_name.append(im_name_k)
im_dim_list.append(im_dim_list_k)
with torch.no_grad():
im_dim_list = torch.FloatTensor(im_dim_list).repeat(1,2)
im_dim_list_ = im_dim_list
procession_tuple = (img, orig_img, im_name, im_dim_list)
return procession_tuple
def detection(self,procession_tuple):
(img, orig_img, im_name, im_dim_list) = procession_tuple
# with get_engine(self.trt_file) as engine, engine.create_execution_context() as context:
if 1:
# inputs, outputs, bindings, stream = common.allocate_buffers(self.engine)
inference_start = time.time()
self.inputs[0].host = img[0] #waiting fix bug
trt_outputs = common.do_inference(self.context, bindings=self.bindings, inputs=self.inputs, outputs=self.outputs, stream=self.stream)
inference_end = time.time()
# print('inference time : %f' % (inference_end-inference_start))
write = 0
for output, shape, anchors in zip(trt_outputs, self.output_shapes, self.yolo_anchors):
output = output.reshape(shape)
trt_output = torch.from_numpy(output).cuda().data
# trt_output = trt_output.data
# cuda_time1 = time.time()
trt_output = predict_transform(trt_output, self.inp_dim, anchors, self.num_classes, self.use_cuda)
# cuda_time2 = time.time()
# print('CUDA time : %f' % (cuda_time2 - cuda_time1))
if type(trt_output) == int:
continue
if not write:
detections = trt_output
write = 1
else:
detections = torch.cat((detections, trt_output), 1)
o_time1 = time.time()
print('TensorRT inference time : %f' % (o_time1-inference_start))
dets = dynamic_write_results(detections, 0.5, self.num_classes, nms=True, nms_conf=0.45)
o_time2 = time.time()
print('After process time : %f' %(o_time2-o_time1))
class_list_all = []
box_list_all = []
conf_list_all = []
if not isinstance(dets,int):
dets = dets.cpu()
im_dim_list = torch.index_select(im_dim_list,0, dets[:, 0].long())
scaling_factor = torch.min(self.inp_dim / im_dim_list, 1)[0].view(-1, 1)
dets[:, [1, 3]] -= (self.inp_dim - scaling_factor * im_dim_list[:, 0].view(-1, 1)) / 2
dets[:, [2, 4]] -= (self.inp_dim - scaling_factor * im_dim_list[:, 1].view(-1, 1)) / 2
dets[:, 1:5] /= scaling_factor
for j in range(dets.shape[0]):
dets[j, [1, 3]] = torch.clamp(dets[j, [1, 3]], 0.0, im_dim_list[j, 0])
dets[j, [2, 4]] = torch.clamp(dets[j, [2, 4]], 0.0, im_dim_list[j, 1])
boxes = dets[:, 1:5]
scores = dets[:, 5:6]
for k in range(len(orig_img)):
boxes_k = boxes[dets[:,0]==k]
scores_k = scores[dets[:,0]==k]
class_list = []
box_list = []
for b in boxes_k:
x1=int(b[0])
x2=int(b[2])
y1=int(b[1])
y2=int(b[3])
box_list.append([x1,x2,y1,y2])
class_list.append('person')
score_list = scores_k.numpy().tolist()
s_list = []
for s in score_list:
s_list.append(s[0])
box_list_all.append(box_list)
conf_list_all.append(s_list)
class_list_all.append(class_list)
return (class_list_all,box_list_all,conf_list_all)
def dict_checkup(self,dict):
if 'img' not in dict:
dict['img']= ''
print('no img in dict')
if 'data' not in dict:
dict['data']={}
print('no data in dict')
if 'info' not in dict:
dict['info']={}
print('no info in dict')
def process_frame(self, frame_dic):
pass
def process_frame_batch(self, frame_dic_list):
for dic in frame_dic_list:
self.dict_checkup(dic)
img_list = []
for dic in frame_dic_list:
img_list.append(dic['img'])
procession_tuple = self.preparing(img_list)
# (img, orig_img, im_name, im_dim_list) = procession_tuple
(class_list_all,box_list_all,conf_list_all) = self.detection(procession_tuple)
if len(class_list_all) == 0:
for frame_dic in frame_dic_list:
frame_dic['data']['number'] = 0
frame_dic['data']['box_list'] = []
frame_dic['data']['class_list'] = []
frame_dic['data']['conf_list'] = []
else:
for i,frame_dic in enumerate(frame_dic_list):
frame_dic['data']['number'] = len(class_list_all[i])
frame_dic['data']['box_list'] = box_list_all[i]
frame_dic['data']['class_list'] = class_list_all[i]
frame_dic['data']['conf_list'] = conf_list_all[i]
return frame_dic_list
if __name__ == '__main__':
init_dict = {'trt':"yolov3-608.trt", 'use_cuda':True}
alpha_yolo3_unit = trt_yolo3_module(init_dict)
input_dic_list = []
img_path = './images/person.jpg'
dic = {'img':cv2.imread(img_path),'data':{},'info':{}}
input_dic_list.append(dic)
while True:
output_dic_list = alpha_yolo3_unit.process_frame_batch(input_dic_list)
for dic in output_dic_list:
img_array = dic['img']
drawing(img_array,dic)
cv2.imshow('show',img_array)
cv2.waitKey(5000)