-
Notifications
You must be signed in to change notification settings - Fork 27
/
ogbn_products.py
166 lines (133 loc) · 5.61 KB
/
ogbn_products.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
from datasets import load_dataset
import pandas as pd
from ogb.nodeproppred import PygNodePropPredDataset
import os.path as osp
import torch_geometric.transforms as T
import openai
from tqdm import tqdm
import torch
import time
import pyarrow as pa
import os
import re
from tqdm import tqdm
def set_api_key():
openai.api_key = "XXX"
def get_transform(normalize_features, transform):
# import ipdb; ipdb.set_trace()
if transform is not None and normalize_features:
transform = T.Compose([T.NormalizeFeatures(), transform])
elif normalize_features:
transform = T.NormalizeFeatures()
elif transform is not None:
transform = transform
return transform
def get_ogbn_dataset(name, normalize_features=True, transform=None):
path = osp.join(osp.dirname(osp.realpath(__file__)), 'data', name)
dataset = PygNodePropPredDataset(name, path)
dataset.transform = get_transform(normalize_features, transform)
return dataset
def ogb_data(normalize_features = False, transform = None):
dataset = get_ogbn_dataset("ogbn-products", normalize_features, transform=transform)
data = dataset[0]
return data
def compress_embeddings(embedding_list, name = 'ogb_product_features.pt'):
arr = pa.array(embedding_list)
torch.save(arr, name)
def get_raw_dataset(raw_train = "raw_data/Amazon-3M.raw/trn.json", raw_test = "raw_data/Amazon-3M.raw/tst.json",
label2cat = "raw_data/ogbn_products/mapping/labelidx2productcategory.csv",
idx2asin = "raw_data/ogbn_products/mapping/nodeidx2asin.csv"
):
train_part = load_dataset("json", data_files=raw_train)
test_part = load_dataset("json", data_files=raw_test)
train_df = train_part['train'].to_pandas()
test_df = test_part['train'].to_pandas()
combine_df = pd.concat([train_df, test_df], ignore_index=True)
label2cat_df = pd.read_csv(label2cat)
idx2asin = pd.read_csv(idx2asin)
idx_mapping = {row[0]: row[1] for row in idx2asin.values}
content_mapping = {row[0]: (row[1], row[2]) for row in combine_df.values}
return idx_mapping, content_mapping
def openai_ada_api(input_list, model_name = 'text-embedding-ada-002', max_len = 8190):
input_list = [x[:max_len] for x in input_list]
res = openai.Embedding.create(input = input_list, model=model_name)['data']
res = [x['embedding'] for x in res]
return res
def save_large_features(large_list, chunk_num = 10):
chunk_size = len(large_list) // chunk_num
for i in tqdm(range(chunk_num)):
if osp.exists(f'ogbn_product_features_{i}.pt'):
continue
part = large_list[i * chunk_size: (i + 1) * chunk_size]
torch.save(part, f'ogbn_product_features_{i}.pt')
def load_backup(path = "ogb/backup/backup.pt"):
initial = torch.load(path)
ogb_path = "ogb/backup"
scatter_filenames = [osp.join(ogb_path, x) for x in os.listdir(ogb_path) if 'backup_' in x and 'compress' not in x]
sort_filenames = sorted(scatter_filenames, key=lambda x:int(re.findall(r'\d+', x)[-1]))
for filename in tqdm(sort_filenames):
size = int(re.findall(r'\d+', filename)[-1])
intermediate_file = torch.load(filename)
initial.extend(intermediate_file)
assert len(initial) <= size
return initial
def generate_embeddings(cache_size = 1024):
if not osp.exists('prompt.pt'):
idx_mapping, content_mapping = get_raw_dataset()
idx_mapping_list = idx_mapping.items()
idx_mapping_list = sorted(idx_mapping_list, key=lambda x:x[0])
prompt_list = []
for key, value in idx_mapping_list:
content = content_mapping[value]
title, abstract = content
title = title.strip()
abstract = abstract.strip()
prompt = f"{title}: {abstract}"
prompt_list.append(prompt)
torch.save(prompt_list, 'prompt.pt')
else:
prompt_list = torch.load('prompt.pt')
print("prompt loaded")
cache_num = 0
backup_num = 1
result = []
total_num = 0
ogb_products = ogb_data()
if osp.exists('backup.pt'):
result = load_backup()
cache_num = len(result)
total_num = len(result)
print("backup loaded")
while cache_num < len(prompt_list):
prompt_input = prompt_list[cache_num :cache_num + cache_size]
if osp.exists(osp.join('ogb', f'backup_{total_num}.pt')):
res = torch.load(osp.join('ogb', f'backup_{total_num}.pt'))
else:
res = openai_ada_api(prompt_input)
cache_num += cache_size
total_num += min(cache_size, len(prompt_list) - cache_size)
print(total_num)
result.extend(res)
torch.save(res, osp.join('ogb/backup', f'backup_{total_num}.pt'))
compress_embeddings(res, osp.join(f'compress_backup_{total_num}.pt'))
print(f"Current number done: {total_num}")
save_large_features(result, chunk_num=10)
compress_embeddings(result)
assert total_num == ogb_products.x.shape[0]
def generate_ogb_products_pd_df():
idx_mapping, content_mapping = get_raw_dataset()
idx_mapping_list = idx_mapping.items()
idx_mapping_list = sorted(idx_mapping_list, key=lambda x:x[0])
titles = []
contents = []
for _, value in tqdm(idx_mapping_list):
content = content_mapping[value]
title, abstract = content
title = title.strip()
abstract = abstract.strip()
titles.append(title)
contents.append(abstract)
df = pd.DataFrame({'title': titles, 'content': contents})
df.to_csv('ogb_products.csv', index=False)
if __name__ == '__main__':
generate_ogb_products_pd_df()