-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathtrain.py
334 lines (265 loc) · 15.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
# -*- coding: utf-8 -*-
import warnings
def ignore_warn(*args, **kwargs):
pass
warnings.warn = ignore_warn #ignore annoying warning (from sklearn and seaborn)
from enum import Enum
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from scipy import stats
from scipy.stats import norm, skew
from sklearn.preprocessing import LabelEncoder
from scipy.special import boxcox1p
from sklearn.linear_model import ElasticNet, Lasso, BayesianRidge, LassoLarsIC
from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor
from sklearn.kernel_ridge import KernelRidge
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import RobustScaler
from sklearn.base import BaseEstimator, TransformerMixin, RegressorMixin, clone
from sklearn.model_selection import KFold, cross_val_score, train_test_split
from sklearn.metrics import mean_squared_error
import xgboost as xgb
import lightgbm as lgb
### STEP1: settings
class Settings(Enum):
train_path = 'data/train.csv'
test_path = 'data/test.csv'
def __str__(self):
return self.value
### STEP2: data processing
def display_outlier(pd, feature):
fig, ax = plt.subplots()
ax.scatter(x = pd[feature], y = pd['SalePrice'])
plt.ylabel('SalePrice', fontsize=13)
plt.xlabel(feature, fontsize=13)
plt.show()
def display_distrib(pd, feature):
plt.figure()
sns.distplot(pd[feature].dropna() , fit=norm);
(mu, sigma) = norm.fit(pd[feature].dropna())
plt.legend(['Normal dist. ($\mu=$ {:.2f} and $\sigma=$ {:.2f} )'.format(mu, sigma)], loc='best')
plt.ylabel('Frequency')
plt.title('SalePrice distribution')
plt.show()
def process_data(train_path, test_path):
print('[data_processing] ', train_path)
print('[data_processing] ', test_path)
global train
global test
global y_train
global train_ID
global test_ID
# load data
train = pd.read_csv(str(train_path))
test = pd.read_csv(str(test_path))
#print('[data_processing] ', train.head(5))
#print('[data_processing] ', test.head(5))
# drop ID feature
print('[data_processing] ', 'The train data size before dropping Id: {} '.format(train.shape))
print('[data_processing] ', 'The test data size before dropping Id: {} '.format(test.shape))
train_ID = train['Id']
test_ID = test['Id']
train.drop('Id', axis = 1, inplace = True)
test.drop('Id', axis = 1, inplace = True)
print('[data_processing] ', 'The train data size after dropping Id: {} '.format(train.shape))
print('[data_processing] ', 'The test data size after dropping Id: {} '.format(test.shape))
# analyze and remove huge outliers: GrLivArea, ...
display_outlier(train, 'GrLivArea')
train = train.drop(train[(train['GrLivArea']>4000) & (train['SalePrice']<300000)].index)
display_outlier(train, 'GrLivArea')
# normalize distribution of output (SalePrice)
display_distrib(train, 'SalePrice')
train["SalePrice"] = np.log1p(train["SalePrice"])
y_train = train.SalePrice.values
display_distrib(train, 'SalePrice')
# concatenate the train and test data
ntrain = train.shape[0]
ntest = test.shape[0]
train.drop(['SalePrice'], axis=1, inplace=True)
all_data = pd.concat((train, test)).reset_index(drop=True)
print('[data_processing] ', 'all_data size is : {}'.format(all_data.shape))
# fill missing data
all_data_na = (all_data.isnull().sum() / len(all_data)) * 100
all_data_na = all_data_na.drop(all_data_na[all_data_na == 0].index).sort_values(ascending=False)[:30]
missing_data = pd.DataFrame({'Missing Ratio' :all_data_na})
print('[data_processing] ', missing_data)
all_data["PoolQC"] = all_data["PoolQC"].fillna("None") #data description says NA means "No Pool". That make sense, given the huge ratio of missing value (+99%) and majority of houses have no Pool at all in general.
all_data["MiscFeature"] = all_data["MiscFeature"].fillna("None") #data description says NA means "no misc feature"
all_data["Alley"] = all_data["Alley"].fillna("None") #data description says NA means "no alley access"
all_data["Fence"] = all_data["Fence"].fillna("None") #NA means "no fence"
all_data["FireplaceQu"] = all_data["FireplaceQu"].fillna("None") #NA means "no fireplace"
all_data["LotFrontage"] = all_data.groupby("Neighborhood")["LotFrontage"].transform(lambda x: x.fillna(x.median())) # fill by the median LotFrontage of all neighborhood because they have same lot frontage
for col in ('GarageType', 'GarageFinish', 'GarageQual', 'GarageCond'):
all_data[col] = all_data[col].fillna('None')
for col in ('GarageYrBlt', 'GarageArea', 'GarageCars'):
all_data[col] = all_data[col].fillna(0)
for col in ('BsmtFinSF1', 'BsmtFinSF2', 'BsmtUnfSF','TotalBsmtSF', 'BsmtFullBath', 'BsmtHalfBath'):
all_data[col] = all_data[col].fillna(0)
for col in ('BsmtQual', 'BsmtCond', 'BsmtExposure', 'BsmtFinType1', 'BsmtFinType2'):
all_data[col] = all_data[col].fillna('None') #NaN means that there is no basement
all_data["MasVnrType"] = all_data["MasVnrType"].fillna("None") #NA means no masonry veneer
all_data["MasVnrArea"] = all_data["MasVnrArea"].fillna(0) #NA means no masonry veneer
all_data['MSZoning'] = all_data['MSZoning'].fillna(all_data['MSZoning'].mode()[0])
all_data = all_data.drop(['Utilities'], axis=1) #For this categorical feature all records are "AllPub", except for one "NoSeWa" and 2 NA . Since the house with 'NoSewa' is in the training set, this feature won't help in predictive modelling. We can then safely remove it
all_data["Functional"] = all_data["Functional"].fillna("Typ") #data description says NA means typical
all_data['Electrical'] = all_data['Electrical'].fillna(all_data['Electrical'].mode()[0]) #It has one NA value. Since this feature has mostly 'SBrkr', we can set that for the missing value.
all_data['KitchenQual'] = all_data['KitchenQual'].fillna(all_data['KitchenQual'].mode()[0]) #Only one NA value, and same as Electrical, we set 'TA' (which is the most frequent) for the missing value in KitchenQual
all_data['Exterior1st'] = all_data['Exterior1st'].fillna(all_data['Exterior1st'].mode()[0]) #Again Both Exterior 1 & 2 have only one missing value. We will just substitute in the most common string
all_data['Exterior2nd'] = all_data['Exterior2nd'].fillna(all_data['Exterior2nd'].mode()[0]) #Again Both Exterior 1 & 2 have only one missing value. We will just substitute in the most common string
all_data['SaleType'] = all_data['SaleType'].fillna(all_data['SaleType'].mode()[0]) #Fill in again with most frequent which is "WD"
all_data['MSSubClass'] = all_data['MSSubClass'].fillna("None") #Na most likely means No building class. We can replace missing values with None
# add important features more
all_data['TotalSF'] = all_data['TotalBsmtSF'] + all_data['1stFlrSF'] + all_data['2ndFlrSF'] #feature which is the total area of basement, first and second floor areas of each house
# normalize skewed features
for feature in all_data:
if all_data[feature].dtype != "object":
#display_distrib(all_data, feature)
all_data[feature] = np.log1p(all_data[feature])
#display_distrib(all_data, feature)
# transform numeric features into categorical features
all_data['MSSubClass'] = all_data['MSSubClass'].apply(str)
all_data['OverallQual'] = all_data['OverallQual'].astype(str)
all_data['OverallCond'] = all_data['OverallCond'].astype(str)
all_data['YrSold'] = all_data['YrSold'].astype(str)
all_data['MoSold'] = all_data['MoSold'].astype(str)
# encode categorical features by LabelEncoder or dummies
# do label encoding for categorical features
categorical_features = \
('FireplaceQu', 'BsmtQual', 'BsmtCond', 'GarageQual', 'GarageCond',
'ExterQual', 'ExterCond','HeatingQC', 'PoolQC', 'KitchenQual', 'BsmtFinType1',
'BsmtFinType2', 'Functional', 'Fence', 'BsmtExposure', 'GarageFinish', 'LandSlope',
'LotShape', 'PavedDrive', 'Street', 'Alley', 'CentralAir', 'MSSubClass', 'OverallQual',
'OverallCond', 'YrSold', 'MoSold')
for c in categorical_features:
lbl = LabelEncoder()
lbl.fit(list(all_data[c].values))
all_data[c] = lbl.transform(list(all_data[c].values))
print('[data_processing] ', 'Shape all_data: {}'.format(all_data.shape))
# get dummy categorical features
all_data = pd.get_dummies(all_data)
print('[data_processing] ', all_data.shape)
train = all_data[:ntrain]
test = all_data[ntrain:]
### STEP3: model
class Averaging_Models(BaseEstimator, RegressorMixin, TransformerMixin):
def __init__(self, models):
self.models = models
# we define clones of the original models to fit the data in
def fit(self, X, y):
self.models_ = [clone(x) for x in self.models]
# Train cloned base models
for model in self.models_:
model.fit(X, y)
return self
# now we do the predictions for cloned models and average them
def predict(self, X):
predictions = np.column_stack([model.predict(X) for model in self.models_])
return np.mean(predictions, axis=1)
class Stacking_Averaged_Models(BaseEstimator, RegressorMixin, TransformerMixin):
def __init__(self, base_models, meta_model, n_folds=5):
self.base_models = base_models
self.meta_model = meta_model
self.n_folds = n_folds
# we again fit the data on clones of the original models
def fit(self, X, y):
self.base_models_ = [list() for x in self.base_models]
self.meta_model_ = clone(self.meta_model)
kfold = KFold(n_splits=self.n_folds, shuffle=True, random_state=15)
# train cloned base models then create out-of-fold predictions that are needed to train the cloned meta-model
out_of_fold_predictions = np.zeros((X.shape[0], len(self.base_models)))
for i, model in enumerate(self.base_models):
for train_index, holdout_index in kfold.split(X, y):
instance = clone(model)
self.base_models_[i].append(instance)
instance.fit(X[train_index], y[train_index])
y_pred = instance.predict(X[holdout_index])
out_of_fold_predictions[holdout_index, i] = y_pred
# now train the cloned meta-model using the out-of-fold predictions as new feature
self.meta_model_.fit(out_of_fold_predictions, y)
return self
# do the predictions of all base models on the test data and use the averaged predictions as
#meta-features for the final prediction which is done by the meta-model
def predict(self, X):
meta_features = np.column_stack([
np.column_stack([model.predict(X) for model in base_models]).mean(axis=1)
for base_models in self.base_models_ ])
return self.meta_model_.predict(meta_features)
n_folds = 5
def rmsle_cv(model):
kf = KFold(n_folds, shuffle=True, random_state=42).get_n_splits(train.values)
rmse= np.sqrt(-cross_val_score(model, train.values, y_train, scoring="neg_mean_squared_error", cv = kf))
return(rmse)
def rmsle(y, y_pred):
return np.sqrt(mean_squared_error(y, y_pred))
def model():
# LASSO Regression
lasso = make_pipeline(RobustScaler(), Lasso(alpha =0.0005, random_state=1))
score = rmsle_cv(lasso)
print('[model] ', "Lasso score(cv): {:.4f} ({:.4f})".format(score.mean(), score.std()))
# Elastic Net Regression
ENet = make_pipeline(RobustScaler(), ElasticNet(alpha=0.0005, l1_ratio=.9, random_state=3))
score = rmsle_cv(ENet)
print('[model] ', "ElasticNet score(cv): {:.4f} ({:.4f})".format(score.mean(), score.std()))
# Kernel Ridge Regression
KRR = KernelRidge(alpha=0.6, kernel='polynomial', degree=2, coef0=2.5)
score = rmsle_cv(KRR)
print('[model] ', "Kernel Ridge score(cv): {:.4f} ({:.4f})".format(score.mean(), score.std()))
# Gradient Boosting Regression
GBoost = GradientBoostingRegressor(n_estimators=3000, learning_rate=0.05,
max_depth=4, max_features='sqrt',
min_samples_leaf=15, min_samples_split=10,
loss='huber', random_state =5)
score = rmsle_cv(GBoost)
print('[model] ', "Gradient Boosting score(cv): {:.4f} ({:.4f})".format(score.mean(), score.std()))
# XGBoost
model_xgb = xgb.XGBRegressor(colsample_bytree=0.4603, gamma=0.0468,
learning_rate=0.05, max_depth=3,
min_child_weight=1.7817, n_estimators=2200,
reg_alpha=0.4640, reg_lambda=0.8571,
subsample=0.5213, silent=1)
score = rmsle_cv(model_xgb)
print('[model] ', "Xgboost score(cv): {:.4f} ({:.4f})".format(score.mean(), score.std()))
# LightGBM
model_lgb = lgb.LGBMRegressor(objective='regression',num_leaves=5,
learning_rate=0.05, n_estimators=720,
max_bin = 55, bagging_fraction = 0.8,
bagging_freq = 5, feature_fraction = 0.2319,
feature_fraction_seed=9, bagging_seed=9,
min_data_in_leaf =6, min_sum_hessian_in_leaf = 11)
score = rmsle_cv(model_lgb)
print('[model] ', "LGBM score(cv): {:.4f} ({:.4f})" .format(score.mean(), score.std()))
# averaged model
averaged_models = Averaging_Models(models = (ENet, GBoost, KRR, lasso))
score = rmsle_cv(averaged_models)
print('[model] ', "Averaged base models score(cv): {:.4f} ({:.4f})".format(score.mean(), score.std()))
# stacked averaged model
stacked_averaged_models = Stacking_Averaged_Models(base_models = (ENet, GBoost, KRR), meta_model = lasso)
score = rmsle_cv(stacked_averaged_models)
print('[model] ', "Stacked averaged-models score(cv): {:.4f} ({:.4f})".format(score.mean(), score.std()))
# StackedRegressor
stacked_averaged_models.fit(train.values, y_train)
stacked_train_pred = stacked_averaged_models.predict(train.values)
stacked_pred = np.expm1(stacked_averaged_models.predict(test.values))
print('[model] ', 'stacked regressor:', rmsle(y_train, stacked_train_pred))
# XGBoost
model_xgb.fit(train, y_train)
xgb_train_pred = model_xgb.predict(train)
xgb_pred = np.expm1(model_xgb.predict(test))
print('[model] ', 'xgboost:', rmsle(y_train, xgb_train_pred))
# LightGBM
model_lgb.fit(train, y_train)
lgb_train_pred = model_lgb.predict(train)
lgb_pred = np.expm1(model_lgb.predict(test.values))
print('[model] ', 'LightGBMs:', rmsle(y_train, lgb_train_pred))
print('[model] ', 'ensemble:', rmsle(y_train,stacked_train_pred*0.70 + xgb_train_pred*0.15 + lgb_train_pred*0.15 ))
ensemble = stacked_pred*0.70 + xgb_pred*0.15 + lgb_pred*0.15
sub = pd.DataFrame()
sub['Id'] = test_ID
sub['SalePrice'] = ensemble
sub.to_csv('submission.csv',index=False)
### MAIN
process_data(Settings.train_path, Settings.test_path)
model()
print('The end!')